The famous factorial again!

1 2 ! 9 ! + 1 3 ! 8 ! + 1 4 ! 7 ! + 1 5 ! 6 ! = n 10 ! , n = ? \large \dfrac1{2!9!}+\dfrac1{3!8!}+\dfrac1{4!7!}+\dfrac1{5!6!}=\dfrac n{10!} \quad,\quad n= \ ? \


The answer is 92.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Danish Ahmed
Nov 22, 2015

Multiply both sides by 10 ! 10! .

n = 10 ! 2 ! 9 ! + 10 ! 3 ! 8 ! + 10 ! 4 ! 7 ! + 10 ! 5 ! 6 ! = 10 2 + 90 6 + 10 9 8 24 + 10 9 8 7 120 = 5 + 15 + 30 + 42 = 92 n = \frac{10!}{2!9!}+\frac{10!}{3!8!}+\frac{10!}{4!7!}+\frac{10!}{5!6!}= \frac{10}{2} + \frac{90}{6} + \frac{10 \cdot 9 \cdot 8}{24} + \frac{10 \cdot 9 \cdot 8 \cdot 7}{120} = 5 + 15 + 30 + 42 = 92

Aareyan Manzoor
Nov 24, 2015

multiply by 11!: 11 n = ( 11 2 ) + ( 11 3 ) + ( 11 4 ) + ( 11 5 ) 11n=\binom{11}{2}+\binom{11}{3}+\binom{11}{4}+\binom{11}{5} add ( 11 0 ) + ( 11 1 ) = 12 \binom{11}{0}+\binom{11}{1}=12 . 11 n + 12 = ( 11 0 ) + ( 11 1 ) + ( 11 2 ) + ( 11 3 ) + ( 11 4 ) + ( 11 5 ) 11n+12=\binom{11}{0}+\binom{11}{1}+\binom{11}{2}+\binom{11}{3}+\binom{11}{4}+\binom{11}{5} by fundemental combo identity 11 n + 12 = ( 11 11 ) + ( 11 10 ) + ( 11 9 ) + ( 11 8 ) + ( 11 7 ) + ( 11 6 ) 11n+12=\binom{11}{11}+\binom{11}{10}+\binom{11}{9}+\binom{11}{8}+\binom{11}{7}+\binom{11}{6} add these two : 22 n + 24 = ( 11 0 ) + ( 11 1 ) + ( 11 2 ) + ( 11 3 ) + ( 11 4 ) + ( 11 5 ) + ( 11 6 ) + ( 11 7 ) + ( 11 8 ) + ( 11 9 ) + ( 11 10 ) + ( 11 11 ) 22n+24=\binom{11}{0}+\binom{11}{1}+\binom{11}{2}+\binom{11}{3}+\binom{11}{4}+\binom{11}{5}+\binom{11}{6}+\binom{11}{7}+\binom{11}{8}+\binom{11}{9}+\binom{11}{10}+\binom{11}{11} by the binomial this is just 22 n + 24 = 2 11 = 2048 22n+24=2^{11}=2048 n = 2048 24 22 = 92 n=\dfrac{2048-24}{22}=\boxed{92}

Nikola Djuric
Dec 14, 2015

Multiply by 11! So 11C2+11C3+11C4+11C5=11n i.e. 12C3+12C5=11n i.e. 12×11×10/6+12×11×10×9×8/120=11n So n=12×10/6+9×8=92

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...