The finest surds ever!

Algebra Level 5

( 4 + 15 ) 3 / 2 + ( 4 15 ) 3 / 2 ( 6 + 35 ) 3 / 2 ( 6 35 ) 3 / 2 . \dfrac{(4+\sqrt{15})^{3/2}+(4-\sqrt{15})^{3/2}}{(6+\sqrt{35})^{3/2}-(6-\sqrt{35})^{3/2}}. If the value of above surd is equal to a b \dfrac{a}{b} ,where gcd ( a , b ) = 1 \text{gcd}(a,b)=1 , find a + b . a+b.


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Shaun Leong
Dec 24, 2015

First, note that m 3 + n 3 = ( m + n ) ( m 2 + n 2 m n ) m^3+n^3 = (m+n)(m^2+n^2-mn) and ( 4 + 15 ) ( 4 15 ) = ( 6 + 35 ) ( 6 35 ) = 1 (4+\sqrt {15})(4-\sqrt {15})=(6+\sqrt {35})(6-\sqrt {35})=1

Let x = ( 4 + 15 ) 3 2 + ( 4 15 ) 3 2 ( 6 + 35 ) 3 2 ( 6 15 ) 3 2 \frac {(4+\sqrt {15})^{\frac {3}{2}}+ (4-\sqrt {15})^{\frac {3}{2}}}{(6+\sqrt {35})^{\frac {3}{2}}-(6-\sqrt {15})^{\frac {3}{2}}}

Squaring, x 2 = x^2= ( 4 + 15 ) 3 + ( 4 15 ) 3 + 2 [ ( 4 + 15 ) ( 4 15 ) ] 3 2 ( 6 + 35 ) 3 ( 6 15 ) 3 2 [ ( 6 + 15 ) ( 6 15 ) ] 3 2 \frac {(4+\sqrt {15})^3+ (4-\sqrt {15})^3+2[(4+\sqrt {15})(4-\sqrt {15})]^{\frac {3}{2}}}{(6+\sqrt {35})^3-(6-\sqrt {15})^3-2[(6+\sqrt {15})(6-\sqrt {15})]^{\frac {3}{2}}} = 8 ( 16 + 8 15 + 15 + 16 8 15 + 15 1 ) + 2 12 ( 36 + 12 35 + 35 + 36 12 35 + 35 1 ) 2 =\frac {8 (16+8\sqrt {15}+15+16-8\sqrt {15}+15-1)+2}{12 (36+12\sqrt {35}+35+36-12\sqrt {35 }+35-1)-2} = 8 61 + 2 12 141 2 =\frac {8*61+2}{12*141-2} = 49 169 =\frac {49}{169} x = 7 13 \Rightarrow x=\frac {7}{13} since x is positive. a + b = 7 + 13 = 20 a+b=7+13=\boxed {20}

Chew-Seong Cheong
Dec 26, 2015

We note that: ( 3 + 15 6 ) 2 = 24 + 6 15 6 = 4 + 15 \left(\dfrac{3+\sqrt{15}}{\sqrt{6}}\right)^2 = \dfrac{24 + 6\sqrt{15}}{6} = 4+\sqrt{15}

\(\begin{array} {} \text{Similarly,} & 4-\sqrt{15} = \left(\dfrac{\sqrt{15}-3}{\sqrt{6}}\right)^2, & 6+\sqrt{35} = \left(\dfrac{\sqrt{35}+5}{\sqrt{10}}\right)^2, & 6-\sqrt{35} = \left(\dfrac{\sqrt{35}-5}{\sqrt{10}} \right)^2 \end{array} \)

Therefore,

( 4 + 15 ) 3 2 + ( 4 15 ) 3 2 ( 6 + 35 ) 3 2 ( 6 35 ) 3 2 = ( 15 + 3 ) 3 + ( 15 3 ) 3 ( 35 + 5 ) 3 ( 35 5 ) 3 × ( 10 ) 3 ( 6 ) 3 = 2 ( 15 15 + 27 15 ) 2 ( 525 + 125 ) × 10 10 6 6 Even or odd terms cancel out. = 42 15 650 × 10 5 6 3 = 7 13 \begin{aligned} \frac{(4+\sqrt{15})^{\frac{3}{2}} + (4-\sqrt{15})^{\frac{3}{2}}}{(6+\sqrt{35})^{\frac{3}{2}} - (6-\sqrt{35})^{\frac{3}{2}}} & = \frac{(\sqrt{15}+3)^3 + (\sqrt{15}-3)^3}{(\sqrt{35}+5)^3 - (\sqrt{35}-5)^3}\times \frac{(\sqrt{10})^3}{(\sqrt{6})^3} \\ & = \frac{\color{#3D99F6}{2(15\sqrt{15}+27\sqrt{15})}}{\color{#D61F06}{2(525+125)}}\times \frac{10\sqrt{10}}{6\sqrt{6}} \quad \quad \small \color{#3D99F6}{\text{Even}} \text{ or } \color{#D61F06}{\text{odd}} \text{ terms cancel out.} \\ & = \frac{42\sqrt{15}}{650} \times \frac{10\sqrt{5}}{6\sqrt{3}} = \frac{7}{13} \end{aligned}

a + b = 7 + 13 = 20 \Rightarrow a + b = 7 + 13 = \boxed{20}

Sir ,How do you come to know that \ ( 3 + 15 6 ) 2 = 4 + 15 \left(\dfrac{3+\sqrt{15}}{\sqrt{6}}\right)^2 = 4+\sqrt{15}

A Former Brilliant Member - 5 years, 5 months ago

Log in to reply

Basically trial and error. You will learn it through practice.

Chew-Seong Cheong - 5 years, 5 months ago

a ± b = a + a 2 b 2 ± a a 2 b 2 \sqrt {a \pm \sqrt{b}} = \sqrt {\frac {a + \sqrt {a^2-b}}{2}} \pm \sqrt {\frac {a - \sqrt {a^2-b}}{2}}

It's a formula...

Manuel Kahayon - 5 years, 5 months ago

Log in to reply

Thanks. I didn't know that. I should have just derived it.

Chew-Seong Cheong - 5 years, 5 months ago

Thank you!

A Former Brilliant Member - 5 years, 5 months ago
Rishabh Jain
Dec 25, 2015

An easy method is to realize 4 ± 15 = ( 3 / 2 ± 5 / 2 ) 2 a n d 6 ± 35 = ( 7 / 2 ± 5 / 2 ) 2 4±√15=(√3/2 ± √5/2)^2 and 6±√35=(√7/2 ± √5/2)^2 then numerator simplifies to √10 (7) while denominator simplifies to √10 (13) , answer is therefore 7+13=20

First Note that,
( 4 + 15 + 4 15 ) = ( 6 + 35 6 35 ) = 10 (\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}})=(\sqrt{6+\sqrt{35}}-\sqrt{6-\sqrt{35}})=\sqrt{10}
Proving.

Let ( 4 + 15 + 4 15 ) = x (\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}})=x and ( 6 + 35 6 35 ) = y (\sqrt{6+\sqrt{35}}-\sqrt{6-\sqrt{35}})=y

Squring both sides.

x 2 = 8 + ( 2 × 1 ) x^2=8+(2×1) and y 2 = 12 ( 2 × 1 ) y^2=12-(2×1)
x = 10 x=\sqrt{10} and y = 10 y=\sqrt{10}
x = y . \Rightarrow \boxed{x=y}.


( 4 + 15 ) 3 + ( 4 15 ) 3 ( 6 + 35 ) 3 ( 6 35 ) 3 \Rightarrow \dfrac{(\sqrt{4+\sqrt{15}})^3+(\sqrt{4-\sqrt{15}})^3}{(\sqrt{6+\sqrt{35}})^3-(\sqrt{6-\sqrt{35}})^3}

Using ( a 3 + b 3 ) (a^3+b^3) and ( a 3 b 3 ) (a^3-b^3) identities.

= ( 4 + 15 + 4 15 ) ( 4 + 15 + 4 15 16 15 ( 6 + 35 6 35 ) ( 6 + 35 + 6 35 + 36 35 =\dfrac{(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}})(4+\sqrt{15}+4-\sqrt{15}-\sqrt{16-15}}{(\sqrt{6+\sqrt{35}}-\sqrt{6-\sqrt{35}})(6+\sqrt{35}+6-\sqrt{35}+\sqrt{36-35}}

= ( 4 + 15 + 4 15 ) × ( 7 ) ( 6 + 35 6 35 ) × ( 13 ) = a b =\dfrac{(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}})×(7)}{(\sqrt{6+\sqrt{35}}-\sqrt{6-\sqrt{35}})×(13)}=\dfrac{a}{b}

= 10 × 7 10 × 13 = a b =\dfrac{\sqrt{10}×7}{\sqrt{10}×13}=\dfrac{a}{b}

7 13 = a b \Rightarrow \boxed{\dfrac{7}{13}=\dfrac{a}{b}}

a + b = 7 + 13 = 20 . \Rightarrow a+b=7+13=\boxed{20}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...