( 6 + 3 5 ) 3 / 2 − ( 6 − 3 5 ) 3 / 2 ( 4 + 1 5 ) 3 / 2 + ( 4 − 1 5 ) 3 / 2 . If the value of above surd is equal to b a ,where gcd ( a , b ) = 1 , find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We note that: ( 6 3 + 1 5 ) 2 = 6 2 4 + 6 1 5 = 4 + 1 5
\(\begin{array} {} \text{Similarly,} & 4-\sqrt{15} = \left(\dfrac{\sqrt{15}-3}{\sqrt{6}}\right)^2, & 6+\sqrt{35} = \left(\dfrac{\sqrt{35}+5}{\sqrt{10}}\right)^2, & 6-\sqrt{35} = \left(\dfrac{\sqrt{35}-5}{\sqrt{10}} \right)^2 \end{array} \)
Therefore,
( 6 + 3 5 ) 2 3 − ( 6 − 3 5 ) 2 3 ( 4 + 1 5 ) 2 3 + ( 4 − 1 5 ) 2 3 = ( 3 5 + 5 ) 3 − ( 3 5 − 5 ) 3 ( 1 5 + 3 ) 3 + ( 1 5 − 3 ) 3 × ( 6 ) 3 ( 1 0 ) 3 = 2 ( 5 2 5 + 1 2 5 ) 2 ( 1 5 1 5 + 2 7 1 5 ) × 6 6 1 0 1 0 Even or odd terms cancel out. = 6 5 0 4 2 1 5 × 6 3 1 0 5 = 1 3 7
⇒ a + b = 7 + 1 3 = 2 0
Sir ,How do you come to know that \ ( 6 3 + 1 5 ) 2 = 4 + 1 5
Log in to reply
Basically trial and error. You will learn it through practice.
a ± b = 2 a + a 2 − b ± 2 a − a 2 − b
It's a formula...
Log in to reply
Thanks. I didn't know that. I should have just derived it.
Thank you!
An easy method is to realize 4 ± √ 1 5 = ( √ 3 / 2 ± √ 5 / 2 ) 2 a n d 6 ± √ 3 5 = ( √ 7 / 2 ± √ 5 / 2 ) 2 then numerator simplifies to √10 (7) while denominator simplifies to √10 (13) , answer is therefore 7+13=20
First
Note
that,
(
4
+
1
5
+
4
−
1
5
)
=
(
6
+
3
5
−
6
−
3
5
)
=
1
0
Proving.
Let ( 4 + 1 5 + 4 − 1 5 ) = x and ( 6 + 3 5 − 6 − 3 5 ) = y
Squring both sides.
x
2
=
8
+
(
2
×
1
)
and
y
2
=
1
2
−
(
2
×
1
)
x
=
1
0
and
y
=
1
0
⇒
x
=
y
.
⇒ ( 6 + 3 5 ) 3 − ( 6 − 3 5 ) 3 ( 4 + 1 5 ) 3 + ( 4 − 1 5 ) 3
Using ( a 3 + b 3 ) and ( a 3 − b 3 ) identities.
= ( 6 + 3 5 − 6 − 3 5 ) ( 6 + 3 5 + 6 − 3 5 + 3 6 − 3 5 ( 4 + 1 5 + 4 − 1 5 ) ( 4 + 1 5 + 4 − 1 5 − 1 6 − 1 5
= ( 6 + 3 5 − 6 − 3 5 ) × ( 1 3 ) ( 4 + 1 5 + 4 − 1 5 ) × ( 7 ) = b a
= 1 0 × 1 3 1 0 × 7 = b a
⇒ 1 3 7 = b a
⇒ a + b = 7 + 1 3 = 2 0 .
Problem Loading...
Note Loading...
Set Loading...
First, note that m 3 + n 3 = ( m + n ) ( m 2 + n 2 − m n ) and ( 4 + 1 5 ) ( 4 − 1 5 ) = ( 6 + 3 5 ) ( 6 − 3 5 ) = 1
Let x = ( 6 + 3 5 ) 2 3 − ( 6 − 1 5 ) 2 3 ( 4 + 1 5 ) 2 3 + ( 4 − 1 5 ) 2 3
Squaring, x 2 = ( 6 + 3 5 ) 3 − ( 6 − 1 5 ) 3 − 2 [ ( 6 + 1 5 ) ( 6 − 1 5 ) ] 2 3 ( 4 + 1 5 ) 3 + ( 4 − 1 5 ) 3 + 2 [ ( 4 + 1 5 ) ( 4 − 1 5 ) ] 2 3 = 1 2 ( 3 6 + 1 2 3 5 + 3 5 + 3 6 − 1 2 3 5 + 3 5 − 1 ) − 2 8 ( 1 6 + 8 1 5 + 1 5 + 1 6 − 8 1 5 + 1 5 − 1 ) + 2 = 1 2 ∗ 1 4 1 − 2 8 ∗ 6 1 + 2 = 1 6 9 4 9 ⇒ x = 1 3 7 since x is positive. a + b = 7 + 1 3 = 2 0