The first equation of the set

Algebra Level 2

Let x , y , z x,y,z be the real numbers such that x y z = 1 xyz=1 . Find the value of

F = 1 1 + x + x y + 1 1 + y + y z + 1 1 + z + z x . F=\dfrac { 1 }{ 1+x+xy } +\dfrac { 1 }{ 1+y+yz } +\dfrac { 1 }{ 1+z+zx } .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 24, 2017

F = 1 1 + x + x y + 1 1 + y + y z + 1 1 + z + z x = 1 1 + x + x y + x x + x y + x y z + x y x y + x y z + x y z x = 1 1 + x + x y + x x + x y + 1 + x y x y + 1 + x = 1 + x + x y 1 + x + x y = 1 \begin{aligned} F & = \frac 1{1+x+xy} + \frac 1{1+y+yz} + \frac 1{1+z+zx} \\ & = \frac 1{1+x+xy} + \frac {\color{#3D99F6}x}{{\color{#3D99F6}x}+{\color{#3D99F6}x}y+{\color{#3D99F6}x}yz} + \frac {\color{#D61F06}xy}{{\color{#D61F06}xy}+{\color{#D61F06}xy}z+{\color{#D61F06}xy}zx} \\ & = \frac 1{1+x+xy} + \frac x{x+xy+1} + \frac {xy}{xy+1+x} \\ & = \frac {1+x+xy}{1+x+xy} \\ & = \boxed{1} \end{aligned}

Linkin Duck
Mar 24, 2017

Since x y z = 1 xyz=1 , we have:

1 1 + y + y z = x x + x y + x y z = x x + x y + 1 , \frac { 1 }{ 1+y+yz } =\frac { x }{ x+xy+xyz } =\frac { x }{ x+xy+1 } ,

1 1 + z + z x = x y x y + x y z + x 2 y z = x y x y + 1 + x . \frac { 1 }{ 1+z+zx } =\frac { xy }{ xy+xyz+{ x }^{ 2 }yz } =\frac { xy }{ xy+1+x } .

Hence, F = 1 + x + x y 1 + x + x y = 1 . F=\frac { 1+x+xy }{ 1+x+xy } =\boxed { 1 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...