The Five Positive Numbers

Algebra Level pending

Let a, b, c, d and e are real positive numbers, such that
{a, b, c, d, e} > 0 and a b c d e a\neq b\neq c\neq d\neq e .

Now consider following properties of {a, b, c, d, e}
1. a, b, c in A.P. (Arithmetic Progression)
2. b, c, d in G.P. (Geometric Progression)
3. c, d, e in A.P. (Arithmetic Progression)
4. a 2 a^{2} + e = [ a × \times b ] + d
5. c + d + e = [ 2 × \times a 2 a^{2} ]

If [ a + b + c + d + e ] is represented in terms of p q \frac{p}{q} , where p and q are co-primes.
What is value of [ 3 × \times q ] - p .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Abhimanyu Singh
Apr 11, 2014

P r o p e r t y 1. { a , b , c } i n A P s o , D > 0 b = a + D c = a + 2 D P r o p e r t y 2. { b , c , d } i n G P s o , c 2 = b d d = ( ( a + 2 D ) 2 ( a + D ) ) P r o p e r t y 3. { c , d , e } i n A P s o , 2 d = c + e e = ( ( a + 2 D ) ( a + 3 D ) ( a + D ) ) P r o p e r t y 4. a 2 + e = a b + d e d = a ( b a ) e d = a D s o , D ( a + 2 D ) a + D = a D D = a a 2 a 2 T h u s b = a 2 a c = a 2 2 a d = a 3 2 a e = a 2 ( 2 a 1 ) 2 a P r o p e r t y 5. c + d + e = 2 a 2 3 a 3 2 a = 2 a 2 a = 4 5 T h u s a = 4 5 b = 2 3 c = 8 15 d = 32 75 e = 8 25 S o , a + b + c + d + e = 206 75 p q 3 q p = 19 . Property 1.\quad \{ a,b,c\} \quad in\quad AP\\ so,\quad \forall D>0\\ b=a+D\\ c=a+2D\\ Property 2.\quad \{ b,c,d\} \quad in\quad GP\\ so,\quad { c }^{ 2 }=bd\Rightarrow d=\left( \frac { { \left( a+2D \right) }^{ 2 } }{ \left( a+D \right) } \right) \\ Property 3.\quad \{ c,d,e\} \quad in\quad AP\\ so,\quad 2d=c+e\Rightarrow e=\left( \frac { \left( a+2D \right) \left( a+3D \right) }{ \left( a+D \right) } \right) \\ Property 4.\quad { a }^{ 2 }+e=ab+d\Rightarrow e-d=a(b-a)\Rightarrow e-d=aD\\ so,\quad \frac { D(a+2D) }{ a+D } =aD\Rightarrow D=\frac { a-{ a }^{ 2 } }{ a-2 } \\ Thus\boxed { b=\frac { a }{ 2-a } \\ c=\frac { { a }^{ 2 } }{ 2-a } \\ d=\frac { { a }^{ 3 } }{ 2-a } \\ e=\frac { { a }^{ 2 }(2a-1) }{ 2-a } } \\ Property 5.\quad c+d+e=2{ a }^{ 2 }\Rightarrow \frac { 3{ a }^{ 3 } }{ 2-a } =2{ a }^{ 2 }\Rightarrow a=\frac { 4 }{ 5 } \\ Thus\boxed { a=\frac { 4 }{ 5 } \\ b=\frac { 2 }{ 3 } \\ c=\frac { 8 }{ 15 } \\ d=\frac { 32 }{ 75 } \\ e=\frac { 8 }{ 25 } } \\ So,\quad a+b+c+d+e=\frac { 206 }{ 75 } \equiv \frac { p }{ q } \Rightarrow \boxed { 3q-p=19 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...