Let
a, b, c, d
and
e
are real positive numbers, such that
{a, b, c, d, e} > 0 and
.
Now consider following properties of {a, b, c, d, e}
1.
a, b, c
in A.P. (Arithmetic Progression)
2.
b, c, d
in G.P. (Geometric Progression)
3.
c, d, e
in A.P. (Arithmetic Progression)
4.
+ e = [ a
b ] + d
5.
c + d + e = [ 2
]
If
[ a + b + c + d + e ]
is represented in terms of
, where
p
and
q
are co-primes.
What is value of
[ 3
q ] - p
.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
P r o p e r t y 1 . { a , b , c } i n A P s o , ∀ D > 0 b = a + D c = a + 2 D P r o p e r t y 2 . { b , c , d } i n G P s o , c 2 = b d ⇒ d = ( ( a + D ) ( a + 2 D ) 2 ) P r o p e r t y 3 . { c , d , e } i n A P s o , 2 d = c + e ⇒ e = ( ( a + D ) ( a + 2 D ) ( a + 3 D ) ) P r o p e r t y 4 . a 2 + e = a b + d ⇒ e − d = a ( b − a ) ⇒ e − d = a D s o , a + D D ( a + 2 D ) = a D ⇒ D = a − 2 a − a 2 T h u s b = 2 − a a c = 2 − a a 2 d = 2 − a a 3 e = 2 − a a 2 ( 2 a − 1 ) P r o p e r t y 5 . c + d + e = 2 a 2 ⇒ 2 − a 3 a 3 = 2 a 2 ⇒ a = 5 4 T h u s a = 5 4 b = 3 2 c = 1 5 8 d = 7 5 3 2 e = 2 5 8 S o , a + b + c + d + e = 7 5 2 0 6 ≡ q p ⇒ 3 q − p = 1 9 .