The floor is a function 2

Algebra Level 5

S = x = 2 2017 y = 1 x 1 z = 0 y 1 2017 y + x z x y \large S = \sum_{x = 2}^{2017} \sum_{y = 1}^{x - 1} \sum_{z = 0}^{y - 1} \left \lfloor \frac{2017y + xz}{xy} \right \rfloor

For S S as defined above, find S \left \lfloor \sqrt{S} \right \rfloor .

Notation: \lfloor \cdot \rfloor denotes the floor function .

This problem is part of the set " Xenophobia "


The answer is 45270.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rindell Mabunga
Jul 4, 2017

Relevant wiki: Hermite's Identity

S = x = 2 2017 y = 1 x 1 z = 0 y 1 2017 y + x z x y S = \sum_{x = 2}^{2017} \sum_{y = 1}^{x - 1} \sum_{z = 0}^{y - 1} \left \lfloor \frac{2017y + xz}{xy} \right \rfloor

S = x = 2 2017 y = 1 x 1 z = 0 y 1 2017 x + z y S = \sum_{x = 2}^{2017} \sum_{y = 1}^{x - 1} \sum_{z = 0}^{y - 1} \left \lfloor \frac{2017}{x} + \frac{z}{y} \right \rfloor

S = x = 2 2017 y = 1 x 1 ( 2017 x + 2017 x + 1 y + 2017 x + 2 y + + 2017 x + y 1 y ) S = \sum_{x = 2}^{2017} \sum_{y = 1}^{x - 1} \left (\left \lfloor \frac{2017}{x} \right \rfloor + \left \lfloor \frac{2017}{x} + \frac{1}{y} \right \rfloor + \left \lfloor \frac{2017}{x} + \frac{2}{y} \right \rfloor + \ldots + \left \lfloor \frac{2017}{x} + \frac{y - 1}{y} \right \rfloor \right )

Using Hermite's Identity ,

2017 x + 2017 x + 1 y + 2017 x + 2 y + + 2017 x + y 1 y = 2017 y x \left \lfloor \frac{2017}{x} \right \rfloor + \left \lfloor \frac{2017}{x} + \frac{1}{y} \right \rfloor + \left \lfloor \frac{2017}{x} + \frac{2}{y} \right \rfloor + \ldots + \left \lfloor \frac{2017}{x} + \frac{y - 1}{y} \right \rfloor = \left \lfloor \frac{2017y}{x} \right \rfloor

S = x = 2 2017 y = 1 x 1 2017 y x S = \sum_{x = 2}^{2017} \sum_{y = 1}^{x - 1} \left \lfloor \frac{2017y}{x} \right \rfloor

S = x = 2 2017 ( 2017 × 1 x + 2017 × 2 x + 2017 × 3 x + + 2017 × x 1 x ) S = \sum_{x = 2}^{2017} \left (\left \lfloor 2017 \times \frac{1}{x} \right \rfloor + \left \lfloor 2017 \times \frac{2}{x} \right \rfloor + \left \lfloor 2017 \times \frac{3}{x} \right \rfloor + \ldots + \left \lfloor 2017 \times \frac{x - 1}{x} \right \rfloor \right )

Let a a be a positive integer less than 2017 2017 .

2017 × a x + 2017 × x a x = 2017 × a x { 2017 × a x } + 2017 × x a x { 2017 × x a x } = 2017 { 2017 × a x } { 2017 × x a x } \left \lfloor 2017 \times \frac{a}{x} \right \rfloor + \left \lfloor 2017 \times \frac{x - a}{x} \right \rfloor = 2017 \times \frac{a}{x} - \left \{ 2017 \times \frac{a}{x} \right \} + 2017 \times \frac{x - a}{x} - \left \{ 2017 \times \frac{x - a}{x} \right \} = 2017 - \left \{ 2017 \times \frac{a}{x} \right \} - \left \{ 2017 \times \frac{x - a}{x} \right \} .

Since the LHS is an integer, the RHS must also be an integer which forces the RHS to be equal to 2016 2016

There are x 1 2 \left \lfloor \frac{x - 1}{2} \right \rfloor pairs that sums up to 2016 2016 and for even values of x x , there will be an extra 1008 1008 added to the sum.

S = x = 2 2017 ( 2016 × x 1 2 ) S = \sum_{x = 2}^{2017} \left ( 2016 \times \frac{x - 1}{2} \right )

S = 2016 × x = 1 2016 x 2 S = 2016 \times \sum_{x = 1}^{2016} \frac{x}{2}

S = 2016 × 2016 × 2017 4 S = \frac{2016 \times 2016 \times 2017}{4}

S = 1008 2 × 2017 \sqrt{S} = \frac{1008}{2} \times \sqrt{2017}

S = 45270 \left \lfloor \sqrt{S} \right \rfloor = \boxed{45270}

Notation: \lfloor \cdot \rfloor denotes the floor function .

and { } \{ \cdot \} denotes the fractional part function .

There is something wrong with the last few lines in your solution. I get S=2049402096. You mentioned it but I think you forgot to add the extra 1008

Bob Kadylo - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...