Evaluate the following limit:
x → 0 lim ⌊ x 2 sin x × tan x ⌋
Note: ⌊ . ⌋ denotes the greatest integer function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
lim x → 0 ⌊ x 2 sin x × tan x ⌋ = lim x → 0 ⌊ x 2 sin x × cos x sin x ⌋ = lim x → 0 ⌊ cos x × x 2 sin 2 x ⌋ = lim x → 0 ⌊ x 2 sin 2 x ⌋ × lim x → 0 ⌊ cos x 1 ⌋ = lim x → 0 ⌊ x sin x ⌋ 2 × lim x → 0 ⌊ cos x 1 ⌋ W e k n o w t h a t lim x → 0 x sin x = 1 , s o c o n t i n u i n g o n : = ⌊ 1 ⌋ 2 × lim x → 0 ⌊ cos x 1 ⌋ = ⌊ cos ( 0 ) 1 ⌋ = ⌊ 1 1 ⌋ = 1
can you please explain step 4 to step 5
Is Limit distributive here? I have problem in this step ( step 4)
Problem Loading...
Note Loading...
Set Loading...
x → 0 lim ⌊ x 2 sin x tan x ⌋ = x → 0 lim ⌊ x 2 cos x sin 2 x ⌋
Using Maclaurin expansion, we have,
x → 0 lim ⌊ x 2 cos x sin 2 x ⌋ = x → 0 lim ⎣ ⎢ ⎢ ⎢ ⎢ x 2 ( 1 − 2 ! x 2 + 4 ! x 4 − . . . ) ( x − 3 ! x 3 + 5 ! x 5 − . . . ) 2 ⎦ ⎥ ⎥ ⎥ ⎥ = ⌊ x 2 ( 1 ) x 2 ⌋ = 1