The function for 2016

Algebra Level 5

For all positive integers x x , a function f ( x ) f(x) is defined as follows:

  • f ( 1 ) = 2016 f(1)=2016 .
  • f ( 1 ) + f ( 2 ) + f ( 3 ) + + f ( n 1 ) + f ( n ) = n 2 f ( n ) f(1)+f(2)+f(3)+\cdots + f(n-1)+f(n)={ n }^{ 2 }f(n) for x > 1 x>1 .

If the value of f ( 2016 ) f(2016) can be expressed as p q \dfrac pq , where p p and q q are coprime positive integers, find p + q p+q .


The answer is 2019.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tay Yong Qiang
May 15, 2016

Note that ( n + 1 ) 2 f ( n + 1 ) n 2 f ( n ) = f ( n + 1 ) (n+1)^2f(n+1)-n^2f(n)=f(n+1)

( n 2 + 2 n + 1 1 ) f ( n + 1 ) = n 2 f ( n ) (n^2+2n+1-1)f(n+1)=n^2f(n)

f ( n + 1 ) = n 2 n ( n + 2 ) f ( n ) f(n+1)=\frac{n^2}{n(n+2)}f(n)

f ( n + 1 ) = n n + 2 f ( n ) f(n+1)=\frac{n}{n+2}f(n)

f ( n ) = n 1 n + 1 f ( n 1 ) f(n)=\frac{n-1}{n+1}f(n-1)

f ( n ) = n 1 n + 1 × n 2 n × n 3 n 1 × × 2 4 × 1 3 × f ( 1 ) \therefore f(n)=\frac{n-1}{n+1} \times \frac{n-2}{n} \times \frac{n-3}{n-1} \times\cdots \times \frac{2}{4} \times \frac{1}{3} \times f(1)

Cancelling like terms and substituting f ( 1 ) = 2016 f(1)=2016 , we get

f ( n ) = 2 × 2016 n ( n + 1 ) f(n)=\frac{2 \times 2016}{n(n+1)}

f ( 2016 ) = 2 × 2016 2016 ( 2016 + 1 ) = 2 2017 \therefore f(2016)=\frac{2 \times 2016}{2016(2016+1)}=\frac{2}{2017}

Required answer: 2 + 2017 = 2019 2+2017=\boxed{2019}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...