The Game's Afoot, Watson!

Calculus Level 5

The multiple integral 0 π 0 π 0 π d u d v d w 1 cos u cos v cos w \int_0^\pi \int_0^\pi \int_0^\pi \frac{du\,dv\,dw}{1 - \cos u \cos v \cos w} can be shown to be equal to P Q Γ ( 1 R ) S \tfrac{P}{Q} \Gamma\big(\tfrac{1}{R}\big)^S for positive integers P , Q , R , S P,Q,R,S , where P , Q P,Q are coprime. What is the value of P + Q + R + S P+Q+R+S ?

Notation : Γ ( ) \Gamma(\cdot) denotes the Gamma function .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Aug 25, 2016

The substitutions x = tan 1 2 u x \,=\, \tan\tfrac12u , y = tan 1 2 v y \,=\, \tan\tfrac12v , z = tan 1 2 w z \,=\, \tan\tfrac12w convert this integral into I = 8 0 0 0 d x d y d z ( 1 + x 2 ) ( 1 + y 2 ) ( 1 + z 2 ) ( 1 x 2 ) ( 1 y 2 ) ( 1 z 2 ) = 4 0 0 0 d x d y d z x 2 + y 2 + z 2 + x 2 y 2 z 2 \begin{array}{rcl} I & = & \displaystyle 8\int_0^\infty\int_0^\infty \int_0^\infty \frac{dx\,dy\,dz}{(1+x^2)(1+y^2)(1+z^2) - (1-x^2)(1-y^2)(1-z^2)} \\ & = & \displaystyle 4\int_0^\infty \int_0^\infty \int_0^\infty \frac{dx\,dy\,dz}{x^2 + y^2 + z^2 + x^2y^2z^2} \end{array} Introducing spherical polar coordinates x = r sin θ cos ϕ x = r\sin\theta\cos\phi , y = r sin θ sin ϕ y = r\sin\theta\sin\phi , z = r cos θ z = r\cos\theta converts the integral to I = 4 0 d r 0 1 2 π d θ 0 1 2 π d ϕ r 2 sin θ r 2 + r 6 sin 4 θ cos 2 θ cos 2 ϕ sin 2 ϕ = 4 0 d r 0 1 2 π d θ 0 1 2 π d ϕ sin θ 1 + r 4 sin 4 θ cos 2 θ cos 2 ϕ sin 2 ϕ = 4 0 d r 0 1 2 π d θ 0 1 2 π d ϕ sin θ 1 + 1 4 r 4 sin 4 θ cos 2 θ sin 2 2 ϕ = 2 0 d r 0 1 2 π d θ 0 π d ϕ sin θ 1 + 1 4 r 4 sin 4 θ cos 2 θ sin 2 ϕ \begin{array}{rcl} I & = & \displaystyle 4\int_0^\infty dr \int_0^{\frac12\pi}d\theta \int_0^{\frac12\pi}d\phi \frac{r^2\sin\theta}{r^2 + r^6\sin^4\theta\cos^2\theta\cos^2\phi\sin^2\phi} \\ & = & \displaystyle 4\int_0^\infty dr \int_0^{\frac12\pi}d\theta \int_0^{\frac12\pi}d\phi \frac{\sin\theta}{1 + r^4\sin^4\theta\cos^2\theta\cos^2\phi\sin^2\phi} \\ & = & \displaystyle 4\int_0^\infty dr \int_0^{\frac12\pi}d\theta \int_0^{\frac12\pi}d\phi \frac{\sin\theta}{1 + \frac14r^4\sin^4\theta\cos^2\theta\sin^22\phi} \\ & = & \displaystyle 2\int_0^\infty dr \int_0^{\frac12\pi}d\theta \int_0^{\pi}d\phi \frac{\sin\theta}{1 + \frac14r^4\sin^4\theta\cos^2\theta\sin^2\phi} \end{array} Since the substitution x = t 4 x = t^4 shows us that 0 d t 1 + t 4 = 1 4 B ( 1 4 , 3 4 ) = Γ ( 1 4 ) Γ ( 3 4 ) 4 Γ ( 1 ) = π 2 2 \int_0^\infty \frac{dt}{1+t^4} \; = \; \tfrac14B\big(\tfrac14,\tfrac34\big) \; = \; \frac{\Gamma(\frac14)\Gamma(\frac34)}{4\Gamma(1)} \; =\; \frac{\pi}{2\sqrt{2}} we can perform the integration with respect to r r to deduce that I = 2 0 1 2 π d θ 0 π d ϕ π sin θ 2 2 ( 1 4 sin 4 θ cos 2 θ sin 2 ϕ ) 1 4 = π 0 1 2 π d θ cos θ 0 π d ϕ sin ϕ \begin{array}{rcl} I & = & \displaystyle 2\int_0^{\frac12\pi}d\theta \int_0^{\pi}d\phi \frac{\pi\sin\theta}{2\sqrt{2}\left(\frac14\sin^4\theta\cos^2\theta\sin^2\phi\right)^{\frac14}} \\ & = & \displaystyle \pi \int_0^{\frac12\pi} \frac{d\theta}{\sqrt{\cos\theta}} \int_0^\pi \frac{d\phi}{\sqrt{\sin\phi}} \end{array} Using symmetry properties of sin \sin and cos \cos , we deduce that I = 2 π ( 0 1 2 π d θ sin θ ) 2 = 1 2 π B ( 1 4 , 1 2 ) 2 = 1 2 π ( Γ ( 1 4 ) Γ ( 1 2 ) Γ ( 3 4 ) ) 2 = 1 4 Γ ( 1 4 ) 4 \begin{array}{rcl} I & = & \displaystyle 2\pi\left(\int_0^{\frac12\pi}\frac{d\theta}{\sqrt{\sin\theta}}\right)^2 \; = \; \tfrac12\pi B\big(\tfrac14,\tfrac12\big)^2 \; = \; \tfrac12\pi\left(\frac{\Gamma(\frac14)\Gamma(\frac12)}{\Gamma(\frac34)}\right)^2 \; = \; \tfrac14\Gamma\big(\tfrac14\big)^4 \end{array} which makes the answer 1 + 4 + 4 + 4 = 13 1+4+4+4 = 13 .

Note: The proof of this integral was first published by G.H.Watson, but the result had been previously obtained by W.F. van Peype (when he was a graduate student).

Yes The paper published by Watson consisted of 3 such integrals.I just got to learn it today.

Spandan Senapati - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...