The multiple integral can be shown to be equal to for positive integers , where are coprime. What is the value of ?
Notation : denotes the Gamma function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The substitutions x = tan 2 1 u , y = tan 2 1 v , z = tan 2 1 w convert this integral into I = = 8 ∫ 0 ∞ ∫ 0 ∞ ∫ 0 ∞ ( 1 + x 2 ) ( 1 + y 2 ) ( 1 + z 2 ) − ( 1 − x 2 ) ( 1 − y 2 ) ( 1 − z 2 ) d x d y d z 4 ∫ 0 ∞ ∫ 0 ∞ ∫ 0 ∞ x 2 + y 2 + z 2 + x 2 y 2 z 2 d x d y d z Introducing spherical polar coordinates x = r sin θ cos ϕ , y = r sin θ sin ϕ , z = r cos θ converts the integral to I = = = = 4 ∫ 0 ∞ d r ∫ 0 2 1 π d θ ∫ 0 2 1 π d ϕ r 2 + r 6 sin 4 θ cos 2 θ cos 2 ϕ sin 2 ϕ r 2 sin θ 4 ∫ 0 ∞ d r ∫ 0 2 1 π d θ ∫ 0 2 1 π d ϕ 1 + r 4 sin 4 θ cos 2 θ cos 2 ϕ sin 2 ϕ sin θ 4 ∫ 0 ∞ d r ∫ 0 2 1 π d θ ∫ 0 2 1 π d ϕ 1 + 4 1 r 4 sin 4 θ cos 2 θ sin 2 2 ϕ sin θ 2 ∫ 0 ∞ d r ∫ 0 2 1 π d θ ∫ 0 π d ϕ 1 + 4 1 r 4 sin 4 θ cos 2 θ sin 2 ϕ sin θ Since the substitution x = t 4 shows us that ∫ 0 ∞ 1 + t 4 d t = 4 1 B ( 4 1 , 4 3 ) = 4 Γ ( 1 ) Γ ( 4 1 ) Γ ( 4 3 ) = 2 2 π we can perform the integration with respect to r to deduce that I = = 2 ∫ 0 2 1 π d θ ∫ 0 π d ϕ 2 2 ( 4 1 sin 4 θ cos 2 θ sin 2 ϕ ) 4 1 π sin θ π ∫ 0 2 1 π cos θ d θ ∫ 0 π sin ϕ d ϕ Using symmetry properties of sin and cos , we deduce that I = 2 π ( ∫ 0 2 1 π sin θ d θ ) 2 = 2 1 π B ( 4 1 , 2 1 ) 2 = 2 1 π ( Γ ( 4 3 ) Γ ( 4 1 ) Γ ( 2 1 ) ) 2 = 4 1 Γ ( 4 1 ) 4 which makes the answer 1 + 4 + 4 + 4 = 1 3 .
Note: The proof of this integral was first published by G.H.Watson, but the result had been previously obtained by W.F. van Peype (when he was a graduate student).