The Geodesic Equation for a Metric

A metric on a two-dimensional space is given by the invariant interval

d s 2 = ( 1 + y 2 ) d x 2 + ( 1 + x 2 ) d y 2 . ds^2 = \big(1+y^2\big) dx^2 + \big(1+x^2\big) dy^2.

Which of the following gives the x x -component of the geodesic equation for this metric?

d 2 x d τ 2 x 1 + y 2 ( d y d τ ) 2 = 0 \frac{d^2 x}{d\tau^2} - \frac{x}{1+y^2}\left(\frac{dy}{d\tau}\right)^2 = 0 d 2 x d τ 2 = 0 \frac{d^2 x}{d\tau^2} = 0 d 2 x d τ 2 + 2 y 1 + y 2 d x d τ d y d τ = 0 \frac{d^2 x}{d\tau^2} + \frac{2y}{1+y^2}\frac{dx}{d\tau} \frac{dy}{d\tau} = 0 d 2 x d τ 2 + 2 y d x d τ d y d τ x ( d y d τ ) 2 1 + y 2 = 0 \frac{d^2 x}{dτ^2}+\frac{2y \frac{dx}{dτ} \frac{dy}{dτ}-x\big(\frac{dy}{dτ}\big)^2}{1+y^2}=0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Syed Shahabudeen
Jan 9, 2018

From the given metric we can obtain the matrix form of covariant metric tensor which is g i j { g }_{ ij } = [ ( 1 + y 2 ) 0 0 ( 1 + x 2 ) ] \begin{bmatrix} \left( 1+{ y }^{ 2 } \right) & 0 \\ 0 & \left( 1+{ x }^{ 2 } \right) \end{bmatrix} . Also we can compute the inverse of the metric tensor which is known as the contravariant metric tensor and its of the form g i j { g }^{ ij } = [ 1 ( 1 + y 2 ) 0 0 1 ( 1 + x 2 ) ] \begin{bmatrix} \frac { 1 }{ \left( 1+{ y }^{ 2 } \right) } & 0 \\ 0 & \frac { 1 }{ \left( 1+{ x }^{ 2 } \right) } \end{bmatrix}

And the remaining thing which is to be done is to find the Christoffel symbols for x x component Γ i j x \Gamma^x_{ij} (here i i and j j are dummy variables and they can take either values of x x or y y ) for this we make use of the equation Γ i j x = 1 2 g x l ( g j l i + g i l j g i j l ) { \Gamma }_{ ij }^{ x }=\frac { 1 }{ 2 } { g }^{ xl }\left( \frac { \partial { g }^{ jl } }{ \partial i } +\frac { \partial { g }^{ il } }{ \partial j } -\frac { \partial { g }^{ ij } }{ \partial l } \right) .when i = x i = x and j = y j = y or vice versa then Γ x y x \Gamma^x_{xy} = Γ y x x \Gamma^x_{yx} = 1 2 g x x ( g x x y ) \frac { 1 }{ 2 } { g }^{ xx }\left( \frac { \partial { g }_{ xx } }{ \partial y } \right) = y 1 + y 2 \frac { y }{ 1+{ y }^{ 2 } } and when i = y i = y and j = y j = y then Γ y y x \Gamma^x_{yy} = 1 2 g x x ( g y y x ) -\frac { 1 }{ 2 } { g }^{ xx }\left( \frac { \partial { g }_{ yy } }{ \partial x } \right) = x 1 + y 2 \frac { -x }{ 1+{ y }^{ 2 } } . [[Note: g x x = 1 1 + y 2 { g }^{ xx } = \frac { 1 }{ 1+{ y }^{ 2 } } and g x x = ( 1 + y 2 ) { g }_{ xx }=\left( 1+{ y }^{ 2 } \right) like wise g y y = 1 1 + x 2 { g }^{ yy }=\frac { 1 }{ 1+{ x }^{ 2 } } and g y y = ( 1 + x 2 ) { g }_{ yy }=\left( 1+{ x }^{ 2 } \right) . well the value for Γ x x x = 0 { \Gamma }_{ xx }^{ x } = 0 ]]

On substituting these values in the geodesic equation d 2 x d τ 2 + Γ i j x d x i d τ d x j d τ = 0. \frac{d^2 x}{d\tau^2} + \Gamma^x_{ij} \frac{dx^i}{d\tau} \frac{dx^j}{d\tau} = 0. we obtain the answer for the x x -component of the geodesic equation for that given metric.

what is the index l?

Jon Pinder - 1 year, 1 month ago
Matt DeCross
Dec 23, 2017

The relevant Christoffel symbols are the Γ i j x \Gamma^x_{ij} . The nonzero ones can be computed to be:

Γ y x x = Γ x y x = y 1 + y 2 Γ y y x = x 1 + y 2 \begin{aligned} \Gamma^x_{yx} &= \Gamma^x_{xy} = \frac{y}{1+y^2}\\ \Gamma^x_{yy} &= \frac{-x}{1+y^2} \end{aligned}

Plugging in to the geodesic equation: d 2 x d τ 2 + Γ i j x d x i d τ d x j d τ = 0. \frac{d^2 x}{d\tau^2} + \Gamma^x_{ij} \frac{dx^i}{d\tau} \frac{dx^j}{d\tau} = 0. obtains the answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...