The Geometry of Perpendiculars

Geometry Level 4

Perpendiculars are drawn from the points on the line x + 2 2 = y + 1 1 = z 3 \frac{x + 2}{2} = \frac{y + 1}{-1} = \frac{z}{3} to the plane x + y + z = 3 x + y + z = 3 .

The feet of the perpendiculars lie on the line:

x 2 = y 1 7 = z 2 5 \frac{x}{2} = \frac{y - 1}{-7} = \frac{z - 2}{5} x 5 = y 1 8 = z 2 13 \frac{x}{5} = \frac{y - 1}{8} = \frac{z - 2}{-13} x 4 = y 1 3 = z 2 7 \frac{x}{4} = \frac{y - 1}{3} = \frac{z - 2}{-7} x 2 = y 1 3 = z 2 5 \frac{x}{2} = \frac{y - 1}{3} = \frac{z - 2}{-5}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let x + 2 2 = y + 1 1 = z 3 = a \frac{x + 2}{2} = \frac{y + 1}{-1} = \frac{z}{3} = a , where a a is any constant.

Any point on the above line has:

x = 2 a 2 x = 2a - 2 , y = a 1 y = -a - 1 and z = 3 a z = 3a

Let the foot of the perpendicular from ( 2 a 2 , a 1 , 3 a ) (2a - 2,-a - 1, 3a) to x + y + z = 3 x + y + z = 3 be ( x 1 , y 1 , z 1 ) (x_{1}, y_{1}, z_{1}) .

\implies x 1 ( 2 a 2 ) 1 = y 1 ( a 1 ) 1 = z 1 3 a 1 = 2 a 2 a 1 + 3 a 3 1 + 1 + 1 \frac{x_{1} - (2a - 2)}{1} = \frac{y_{1} - (-a - 1)}{1} = \frac{z_{1} - 3a}{1} = -\frac{2a - 2 - a - 1 + 3a - 3}{1 + 1 + 1}

\implies x 1 2 a + 2 1 = y 1 + a + 1 1 = z 1 3 a 1 = 4 a + 6 3 \frac{x_{1} - 2a + 2}{1} = \frac{y_{1} + a + 1}{1} = \frac{z_{1} - 3a}{1} = \frac{-4a + 6}{3}

\implies x 1 2 a + 2 = y 1 + a + 1 = z 1 3 a = 2 4 a 3 x_{1} - 2a + 2 = y_{1} + a + 1 = z_{1} - 3a = 2 - \frac{4a}{3}

\implies x 1 = 2 a 3 , y 1 = 1 7 a 3 = 2 + 5 a 3 x_{1} = \frac{2a}{3}, y_{1} = 1 - \frac{7a}{3} = 2 + \frac{5a}{3}

\implies a = x 1 0 2 / 3 = y 1 1 7 / 3 = z 1 2 5 / 3 a = \frac{x_{1} - 0}{2/3} = \frac{y_{1} - 1}{-7/3} = \frac{z_{1} - 2}{5/3}

\implies a 3 = x 1 2 = y 1 1 7 = z 1 2 5 \boxed{\frac{a}{3} = \frac{x_{1}}{2} = \frac{y_{1} - 1}{-7} = \frac{z_{1} - 2}{5}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...