The golden ratio always appears at the right moment

Calculus Level 5

0 d x 1 + x 4 ( 1 + x ϕ ) \large \int_0^\infty\dfrac{dx}{\sqrt{1+x^4}(1+x^\phi)}

Let ϕ = 1 + 5 2 \phi = \dfrac{1+\sqrt5}2 denotes the golden ratio . Compute the integral above.

Give your answer to 4 decimal places.


The answer is 0.9270.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pi Han Goh
Aug 23, 2016

Synopsis : We start with the transformation x 1 x x\longmapsto \dfrac1x , add these two integrals together to get a simplified integrand. Finish if off by rewriting the integral in terms of the Beta function .


The given value of ϕ = 1 + 5 2 \phi = \dfrac{1+\sqrt5}2 is just a red herring, in fact, f ( A ) : = 0 d x 1 + x 4 ( 1 + x A ) \displaystyle f(A) := \int_0^\infty \dfrac{dx}{\sqrt{1+x^4} (1+x^A)} is equal to [ Γ ( 1 4 ) ] 2 8 π \dfrac{\left [\Gamma\left( \frac14\right)\right]^2}{8\sqrt\pi} for all A A .

We start with the transformation y = 1 x d y d x = 1 x 2 d x = d y y 2 y = \dfrac1x\Rightarrow \dfrac{dy}{dx} = -\dfrac{1}{x^2}\Rightarrow dx =-\dfrac{dy}{y^2} , then

f ( A ) = 0 1 ( 1 y 4 ) 4 + 1 ( 1 + 1 y A ) d y y 2 = 0 d y y 4 + 1 y A y A + 1 . f(A) = \int_{\infty}^0 \dfrac{1}{\sqrt{\left(\frac1{y^4}\right)^4 + 1} \left(1 + \frac1{y^A}\right)} \cdot -\dfrac{dy}{y^2} \; = \; \int_0^\infty \dfrac{dy}{\sqrt{y^4+1}} \cdot \dfrac{y^A}{y^A + 1} \; .

Adding the equation above with the original form of f ( A ) f(A) gives

f ( A ) + f ( A ) = 0 d y y 4 + 1 ( 1 y A + 1 + y A y A + 1 ) 1 2 f ( A ) = 0 d y y 4 + 1 , let y = tan z d y d z = 1 2 ( tan z ) 1 / 2 sec 2 z 2 f ( A ) = 1 2 0 π / 2 ( tan z ) 1 / 2 sec 2 z sec z d z 4 f ( A ) = 0 π / 2 ( sin z ) 1 / 2 ( cos z ) 1 / 2 d z 8 f ( A ) = 2 0 π / 2 ( sin z ) 2 m 1 ( cos z ) 2 n 1 d z , where 2 m 1 = 2 n 1 = 1 2 m = n = 1 4 8 f ( A ) = Γ ( m ) Γ ( n ) Γ ( m + n ) = [ Γ ( 1 4 ) ] 2 Γ ( 1 2 ) f ( ϕ ) = f ( A ) = [ Γ ( 1 4 ) ] 2 8 π 0.9270 . \begin{aligned} f(A) + f(A) &= &\int_0^\infty \dfrac{dy}{\sqrt{y^4+1}} \cdot \cancelto1{ \left( \dfrac1{y^A + 1} + \dfrac{y^A}{y^A + 1} \right)} \\ 2 f(A)& =& \int_0^\infty \dfrac{dy}{\sqrt{y^4+1}} \qquad ,\qquad \text{ let }y = \sqrt{\tan z} \Rightarrow \dfrac{dy}{dz} =\dfrac12(\tan z)^{-1/2} \sec^2 z \\ 2 f(A)& =& \dfrac12\int_0^{\pi /2} \dfrac{(\tan z)^{-1/2} \sec^2 z}{\sec z}\, dz \\ 4 f(A)& =& \int_0^{\pi /2} (\sin z)^{-1/2} (\cos z)^{-1/2} \, dz \\ 8 f(A)& =& 2\int_0^{\pi /2} (\sin z)^{2m-1} (\cos z)^{2n-1} \, dz \qquad , \qquad \text{ where } 2m-1 = 2n-1 = -\dfrac12 \Leftrightarrow m=n=\dfrac14 \\ 8 f(A)& =& \dfrac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)} = \dfrac{\left[\Gamma \left( \frac14\right) \right]^2}{\Gamma\left( \frac12\right)} \\ f(\phi) = f(A) & =&\dfrac{\left[\Gamma \left( \frac14\right) \right]^2}{8\sqrt\pi} \approx \boxed{0.9270} \; . \end{aligned}

Note : The penultimate step follows from the properties of the trigonometric representation of the Beta function , B ( x , y ) = Γ ( x ) Γ ( y ) Γ ( x + y ) = 0 π / 2 2 sin 2 x 1 t cos 2 y 1 t d t \displaystyle B(x,y)=\dfrac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} = \int_0^{\pi/2} 2\sin^{2x-1}t\cos^{2y-1}t \, dt , where Γ ( ) \Gamma( \cdot ) denotes the Gamma function with Γ ( 1 2 ) = π \Gamma \left( \dfrac12\right) = \sqrt\pi .

Well done! The main point is to notice that ϕ \phi is indeed a red herring. It is quite remarkable that the integral I ( a ) : = 0 1 1 + x a 1 ( 1 + x α ) β d x I(a):=\int_0^\infty\frac1{1+x^a}\frac1{(1+x^\alpha)^\beta}dx is independent of a a iff α β = 2 \alpha\beta=2 .

Diego G - 4 years, 9 months ago

Log in to reply

POST MORE! POST MORE!!

Pi Han Goh - 4 years, 9 months ago

Log in to reply

I was a little busy these days, but I'll try to think of something tomorrow! I'm glad to know that you like the problems!

Diego G - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...