Can I just separate them?

Calculus Level 2

Find:. ( 1 1 2 + 1 3 2 + 1 5 2 + ) ÷ ( 1 2 2 + 1 4 2 + 1 6 2 + ) \large \left( \frac1{1^2} + \frac1{3^2} + \frac1{5^2} + \ldots \right) \div \left( \frac1{2^2} + \frac1{4^2} + \frac1{6^2} + \ldots \right)

Given that m = 1 1 m 2 = 1 + 1 2 2 + 1 3 2 + = π 2 6 \displaystyle \sum_{m=1}^\infty \frac1{m^2} = 1 + \frac1{2^2} + \frac1{3^2} + \ldots = \frac{\pi^2}6 .. Please reshare if you like this problem. Try this also .

5/3 3 4/3 1 3/2 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mainak Pal
Jun 13, 2015

You don't need any values to evaluate it. [ 1 + 1 3 2 + 1 5 2 + . . . ] = [ 1 + 1 2 2 + 1 3 2 + 1 4 2 + 1 5 2 + . . . ] [ 1 2 2 + 1 4 2 + 1 6 2 + . . . ] a n d , [ 1 2 2 + 1 4 2 + 1 6 2 + . . . ] = 1 2 2 [ 1 + 1 2 2 + 1 3 2 + 1 4 2 + 1 5 2 + . . . ] S o , [ 1 + 1 3 2 + 1 5 2 + . . . ] ÷ [ 1 2 2 + 1 4 2 + 1 6 2 + . . . ] = [ 1 + 1 2 2 + 1 3 2 + 1 4 2 + 1 5 2 + . . . ] [ 1 2 2 + 1 4 2 + 1 6 2 + 1 8 2 . . . ] 1 = [ 1 + 1 2 2 + 1 3 2 + 1 4 2 + 1 5 2 + . . . ] 1 2 2 [ 1 + 1 2 2 + 1 3 2 + 1 4 2 + 1 5 2 + . . . ] 1 = 3 \left[ 1+\frac { 1 }{ { 3 }^{ 2 } } +\frac { 1 }{ { 5 }^{ 2 } } +...\infty \right] =\left[ 1+\frac { 1 }{ { 2 }^{ 2 } } +\frac { 1 }{ { 3 }^{ 2 } } +\frac { 1 }{ { 4 }^{ 2 } } +\frac { 1 }{ { 5 }^{ 2 } } +...\infty \right] -\left[ \frac { 1 }{ { 2 }^{ 2 } } +\frac { 1 }{ { 4 }^{ 2 } } +\frac { 1 }{ { 6 }^{ 2 } } +...\infty \right] \\ \\ and,\quad \left[ \frac { 1 }{ { 2 }^{ 2 } } +\frac { 1 }{ { 4 }^{ 2 } } +\frac { 1 }{ { 6 }^{ 2 } } +...\infty \right] =\frac { 1 }{ { 2 }^{ 2 } } \left[ 1+\frac { 1 }{ { 2 }^{ 2 } } +\frac { 1 }{ { 3 }^{ 2 } } +\frac { 1 }{ { 4 }^{ 2 } } +\frac { 1 }{ { 5 }^{ 2 } } +...\infty \right] \\ \\ So,\\ \left[ 1+\frac { 1 }{ { 3 }^{ 2 } } +\frac { 1 }{ { 5 }^{ 2 } } +...\infty \right] \div \left[ \frac { 1 }{ { 2 }^{ 2 } } +\frac { 1 }{ { 4 }^{ 2 } } +\frac { 1 }{ { 6 }^{ 2 } } +...\infty \right] =\frac { \left[ 1+\frac { 1 }{ { 2 }^{ 2 } } +\frac { 1 }{ { 3 }^{ 2 } } +\frac { 1 }{ { 4 }^{ 2 } } +\frac { 1 }{ { 5 }^{ 2 } } +...\infty \right] }{ \left[ \frac { 1 }{ { 2 }^{ 2 } } +\frac { 1 }{ { 4 }^{ 2 } } +\frac { 1 }{ { 6 }^{ 2 } } +\frac { 1 }{ { 8 }^{ 2 } } ...\infty \right] } -1\\ =\frac { \left[ 1+\frac { 1 }{ { 2 }^{ 2 } } +\frac { 1 }{ { 3 }^{ 2 } } +\frac { 1 }{ { 4 }^{ 2 } } +\frac { 1 }{ { 5 }^{ 2 } } +...\infty \right] }{ \frac { 1 }{ { 2 }^{ 2 } } \left[ 1+\frac { 1 }{ { 2 }^{ 2 } } +\frac { 1 }{ { 3 }^{ 2 } } +\frac { 1 }{ { 4 }^{ 2 } } +\frac { 1 }{ { 5 }^{ 2 } } +...\infty \right] } -1=3

good solution !

Gaurav Jain - 5 years, 12 months ago
Rwit Panda
Jun 15, 2015

In the denominator, take 1/4 common and you get an inverse square series. So the value of the denominator is pi^2/24. Another observation is that the numerator is an (inverse square series) - (denominator). So it has a value of 3(pi^2)/24. The fraction thus holds a value of 3.

Gaurav Jain
Jun 12, 2015

The numerator one has the value (pi^2)/8 and the denominator has (pi^2)/24. The Lord Brounker's formula.

Moderator note:

This is not a complete solution. Can you derive the values of π 2 8 \frac{\pi^2}{8} and π 2 24 \frac{\pi^2}{24} yourself?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...