The Guardians!

Algebra Level 3

Evaluate the number of zeroes in the value of :

k = 1 2018 ( tan ( k π 2019 ) ) 4 . \large\ \displaystyle {\sum _{ k=1 }^{ 2018 }{ { \left( \tan { \left( \frac { k\pi }{ 2019 } \right) } \right) }^{ 4 } } }.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Priyanshu Mishra
Mar 5, 2019

We will show that if n n is an odd positive integer then

k = 1 n 1 ( tan ( k π n ) ) 4 = 2 ( n 2 ) 2 4 ( n 4 ) . \large\ \sum _{ k=1 }^{ n-1 }{ { \left( \tan { \left( \frac { k\pi }{ n } \right) } \right) }^{ 4 } } = 2{n \choose 2}^2 - 4{n \choose 4}.

and for n = 2019 n =2019 , it gives 553890090097 553890090097 which has indeed 4 \boxed{4} zeroes.

It is easy to verify that

k = 0 n 1 ( x t k ) = R e ( ( x + i ) n ) = k = 0 ( n 1 ) 2 ( n 2 k ) x n 2 k ( 1 ) k , \large\ \displaystyle { \prod _{ k=0 }^{ n-1 }{ \left( x - { t }_{ k } \right) } = Re\left( { \left( x+i \right) }^{ n } \right) = \sum _{ k=0 }^{ \frac { \left( n - 1 \right) }{ 2 } }{{n \choose {2k} } { x }^{ n-2k }{ \left( -1 \right) }^{ k } } },

where t k = tan ( k π n ) { t }_{ k } = \tan { \left( \frac { k\pi }{ n } \right) } , since both sides are monic polynomials of degree n n which vanish at x = t k . x = t_k. Hence, letting

k = 0 n 1 ( x 4 t k 4 ) = k = 0 n 1 ( x t k ) ( x t k ) ( i x t k ) ( i x t k ) = x 4 n ( 2 ( n 2 ) 2 4 ( n 4 ) ) x 4 n 4 + R ( x ) , \large\ {\displaystyle \prod _{ k=0 }^{ n-1 }{ \left( { x }^{ 4 }-{ { { t }_{ k } }^{ 4 } } \right) } = -\prod _{ k=0 }^{ n-1 }{ \left( x-{ t }_{ k } \right) \left( -x-{ t }_{ k } \right) \left( ix-{ t }_{ k } \right) \left( -ix-{ t }_{ k } \right) } ={ x }^{ 4n } - { \left( 2{n \choose 2}^2 - 4{n \choose 4} \right)}{ x }^{ 4n-4 } + R(x) },

where R ( x ) R(x) is the sum of all the terms of lower degree. On the other hand

k = 0 n 1 ( x 4 t k 4 ) = x 4 n S n x 4 n 4 + R ( x ) \large\ { \prod _{ k=0 }^{ n-1 }{ \left( { x }^{ 4 } - { { { t }_{ k } }^{ 4 } } \right) } = x^{4n} -{S_n}x^{4n-4} + R(x) }

and the desired result follows.

It is easy to verify that k = 0 n 1 ( x t k ) = k = 0 ( n 1 ) 2 ( n 2 k ) x n 2 k ( 1 ) k , \large\ \displaystyle { \prod _{ k=0 }^{ n-1 }{ \left( x - { t }_{ k } \right) } = \sum _{ k=0 }^{ \frac { \left( n - 1 \right) }{ 2 } }{{n \choose {2k} } { x }^{ n-2k }{ \left( -1 \right) }^{ k } } }, where t k = tan ( k π n ) { t }_{ k } = \tan { \left( \frac { k\pi }{ n } \right) } , since both sides are monic polynomials of degree n n which vanish at x = t k . x = t_k.

Can you elaborate on this? I don't think this is straightforward at all.

Pi Han Goh - 2 years, 3 months ago

@Pi Han Goh , indeed it is easy. I have just put one more term to simplify.

Priyanshu Mishra - 2 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...