The hard determinant

Algebra Level 4

cos 201 9 cos 113 1 cos 186 9 cos 110 1 cos 113 1 cos 201 9 cos 110 1 cos 186 9 cos 186 9 cos 110 1 cos 201 9 cos 113 1 cos 110 1 cos 186 9 cos 113 1 cos 201 9 = ? \begin{vmatrix} \cos 2019^{\circ} & \cos 1131^{\circ} & \cos 1869^{\circ} & \cos 1101^{\circ}\\ -\cos 1131^{\circ} & \cos 2019^{\circ} & -\cos 1101^{\circ} & \cos 1869^{\circ}\\ -\cos 1869^{\circ} & \cos 1101^{\circ} & \cos 2019^{\circ} & -\cos 1131^{\circ} \\ -\cos 1101^{\circ} & -\cos 1869^{\circ} & \cos 1131^{\circ} & \cos 2019^{\circ}\end{vmatrix}=?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

By direct expansion, the value of the determinant is ( cos 2 2019 ° + cos 2 1131 ° ) 2 + ( cos 2 1869 ° + cos 2 1101 ° ) 2 + 2 ( cos 2019 ° cos 1101 ° cos 1131 ° cos 1869 ° ) 2 + 2 ( cos 2019 ° cos 1869 ° + cos 1131 ° cos 1101 ° ) 2 (\cos^2 2019\degree+\cos^2 1131\degree)^2+(\cos^2 1869\degree+\cos^2 1101\degree)^2+2(\cos 2019\degree\cos 1101\degree-\cos 1131\degree\cos 1869\degree)^2+2(\cos 2019\degree\cos 1869\degree+\cos 1131\degree\cos 1101\degree)^2 . Now cos 2019 ° = cos 39 ° , cos 1131 ° = cos 51 ° = sin 39 ° , cos 1869 ° = cos 69 ° , cos 1101 ° = cos 21 ° = sin 69 ° \cos 2019\degree=-\cos 39\degree, \cos 1131\degree=\cos 51\degree=\sin 39\degree, \cos 1869\degree=\cos 69\degree, \cos 1101\degree=\cos 21\degree=\sin 69\degree . Substituting all these we get the value of the determinant as 1 2 + 1 2 + 2 × 1 2 + 2 × 1 2 = 4 1^2+1^2+2\times 1^2+2\times 1^2=\boxed 4 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...