The Hard Equality

Algebra Level 3

If x 4 + 1 x 4 = 727 x^4 + \frac {1}{x^4} = 727 , find x 3 1 x 3 \left | x^3 - \frac{1}{x^3} \right |

( x x is a real number)


The answer is 140.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Adding 2 to both sides of the equation, x 4 + 1 x 4 + 2 = 729 x^4+\frac{1}{x^4}+2=729 or ( x 2 + 1 x 2 ) 2 = 2 7 2 (x^2+\frac{1}{x^2})^2=27^2 or x 2 + 1 x 2 = 27 x^2+\frac{1}{x^2}=27 .

Now, subtracting 2 from both sides, x 2 + 1 x 2 2 = 25 x^2+\frac{1}{x^2}-2=25 or ( x 1 x ) 2 = 5 2 (x-\frac{1}{x})^2=5^2 or x 1 x = 5 x-\frac{1}{x}=5 .

x 3 1 x 3 = ( x 1 x ) ( x 2 + 1 x 2 + x 3 × 1 x 3 ) = 5 × ( 27 + 1 ) = 5 × 28 = 140 x^3-\frac{1}{x^3}=(x-\frac{1}{x})(x^2+\frac{1}{x^2}+x^3 \times \frac{1}{x^3})=5 \times (27+1)=5 \times 28 =\boxed{140} .

Nice solution

Keep up on the good work

Jason Chrysoprase - 5 years, 4 months ago

Actually, x 3 1 x 3 = ( x 1 x ) 3 + 3 ( x 1 x ) x^3 - \frac{1}{x^3} = (x -\frac{1}{x})^3 + 3(x -\frac{1}{x})

x 3 1 x 3 = 5 3 + 3 ( 5 ) x^3 - \frac{1}{x^3}=5^3 +3(5)

x 3 1 x 3 = 125 + 15 x^3 - \frac{1}{x^3}= 125 + 15

x 3 1 x 3 = 140 x^3 - \frac{1}{x^3} = 140

Jason Chrysoprase - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...