The hardest integral?

Calculus Level 3

e e sin ( x ) cos ( x ) 1 x 2 + x 4 d x = ? \large \int_{-e}^{e} \frac{\sin(x)\cos (x)}{1-x^{2}+x^{4}}dx = ?

π e π-e 1 0 e e

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 15, 2018

The integrand sin x cos x 1 x 2 + x 4 \dfrac {\sin x \cos x}{1-x^2+x^4} is odd. Therefore, the integral e e sin x cos x 1 x 2 + x 4 d x = 0 \displaystyle \int_{-e}^e \frac {\sin x \cos x}{1-x^2+x^4} dx = \boxed{0} .

if you look at the function we have to integrate f ( x ) = s e n ( x ) c o s ( x ) 1 x 2 + x 4 f(x)=\frac{sen(x)cos (x)}{1-x^{2}+x^{4}} we see that f ( x ) = f ( x ) f(-x)=-f(x)

f ( x ) = s e n ( x ) c o s ( x ) 1 ( x ) 2 + ( x ) 4 = s e n ( x ) c o s ( x ) 1 x 2 + x 4 = f ( x ) f(-x)=\frac{sen(-x)cos (-x)}{1-(-x)^{2}+(-x)^{4}}=-\frac{sen(x)cos (x)}{1-x^{2}+x^{4}}=-f(x)

and when f ( x ) = f ( x ) f(-x)=-f(x) , f ( x ) f(x) is an odd function

if f ( x ) f(x) is an odd function a a f ( x ) d x = 0 \int_{-a}^{a} f(x)dx=0

@Alberto Caldera Morante What do you mean by sen(x) ??

Aaghaz Mahajan - 3 years, 1 month ago

Log in to reply

sen x = sin x

Naren Bhandari - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...