∫ − e e 1 − x 2 + x 4 sin ( x ) cos ( x ) d x = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
if you look at the function we have to integrate f ( x ) = 1 − x 2 + x 4 s e n ( x ) c o s ( x ) we see that f ( − x ) = − f ( x )
f ( − x ) = 1 − ( − x ) 2 + ( − x ) 4 s e n ( − x ) c o s ( − x ) = − 1 − x 2 + x 4 s e n ( x ) c o s ( x ) = − f ( x )
and when f ( − x ) = − f ( x ) , f ( x ) is an odd function
if f ( x ) is an odd function ∫ − a a f ( x ) d x = 0
@Alberto Caldera Morante What do you mean by sen(x) ??
Problem Loading...
Note Loading...
Set Loading...
The integrand 1 − x 2 + x 4 sin x cos x is odd. Therefore, the integral ∫ − e e 1 − x 2 + x 4 sin x cos x d x = 0 .