The harmonic alternative

Calculus Level 4

( 1 1 + 1 2 ) ( 1 3 + 1 4 ) + ( 1 5 + 1 6 ) ( 1 7 + 1 8 ) + = ? \left( \frac{1}{1} + \frac{1}{2} \right) -\left( \frac{1}{3} +\frac{1}{4}\right ) + \left( \frac{1}{5} + \frac{1}{6} \right) - \left( \frac{1}{7} + \frac{1}{8} \right) + \ldots = \ ?

Give your answer to 3 decimal places.


The answer is 1.132.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Split the series into two parts: the even denominators and the odd denominators.

The even denominators is just the regular alternating harmonic series divided by 2, so this is just \frac{ln2}{2}.

The odd denominators are a little trickier. Start with the series \frac{1}{1+x^2} = 1-x^{2}+x^{4}-x^{6}...

Then take the integral of both sides. Tan inverse of (x) = x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}....

Plug in x=1 to get: Tan inverse of (1) = 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}....

\frac{\pi}{4} = the series of odd denominators.

So the answer is \frac{\pi}{4} + \frac{ln2}{2}, which is about \boxed{1.132}

Chew-Seong Cheong
Aug 30, 2018

Let the given infinite summation be S S . Now consider the Maclaurin series of ln ( 1 i ) \ln (1-i) , where i = 1 i=\sqrt{-1} is the imaginary unit .

ln ( 1 i ) = i 1 + 1 2 + i 3 1 4 i 5 + 1 6 + i 7 1 8 + Multiply both sides by i i ln ( 1 i ) = 1 1 + i 2 1 3 i 4 + 1 5 + i 6 1 7 i 8 + \begin{aligned} \ln (1-i) & = - \frac i1 + \frac 12 + \frac i3 - \frac 14 - \frac i5 + \frac 16 + \frac i7 - \frac 18 + \cdots & \small \color{#3D99F6} \text{Multiply both sides by }i \\ i \ln (1-i) & = \frac 11 + \frac i2 - \frac 13 - \frac i4 + \frac 15 + \frac i6 - \frac 17 - \frac i8 + \cdots \end{aligned}

S = ( i ln ( 1 i ) ) + ( i ln ( 1 i ) ) \implies S = \Re (i \ln (1-i)) + \Im (i \ln (1-i)) , where ( z ) \Re(z) and ( z ) \Im(z) are real part and imaginary part of complex number z z respectively.

i ln ( 1 i ) = i ln ( 2 ( 1 2 i 2 ) ) By Euler’s formula: e θ i = cos θ + i sin θ = i ln ( 2 e π 4 i ) = i ( ln 2 2 π 4 i ) = π 4 + ln 2 2 i \begin{aligned} i\ln (1- i) & = i \ln \left(\sqrt 2 \color{#3D99F6} \left(\frac 1{\sqrt 2} - \frac i{\sqrt 2} \right) \right) & \small \color{#3D99F6} \text{By Euler's formula: }e^{\theta i} = \cos \theta + i\sin \theta \\ & = i \ln \left(\sqrt 2 \color{#3D99F6} e^{-\frac \pi 4 i} \right) \\ & = i \left(\frac {\ln 2}2 - \frac \pi 4 i \right) \\ & = \frac \pi 4 + \frac {\ln 2}2 i \end{aligned}

Therefore, S = ( i ln ( 1 i ) ) + ( i ln ( 1 i ) ) = π 4 + ln 2 2 1.132 S = \Re (i \ln (1-i)) + \Im (i \ln (1-i)) = \dfrac \pi 4 + \dfrac {\ln 2}2 \approx \boxed{1.132} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...