The (hyper)ball has been dropped

Geometry Level 3

Let V n V_n be the n n -volume of the unit hyperball (the solid hypersphere) in R n \mathbb{R}^{n} . It turns out that V 2019 V 2018 \frac{V_{2019}}{V_{2018}} is a rational number. If we write this number as p q \frac{p}{q} , in lowest terms, find the sum of the smallest prime factor of p p and the largest prime factor of q q .


The answer is 2019.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Otto Bretscher
Jan 1, 2019

Mark Hennings has submitted a "fancy" solution, based on a formula for V n V_n .

For the sake of variety, let me propose a solution "from first principles."

A cross section through a unit n n -hyperball at x n = u x_n=u , where u 1 |u|\leq 1 , is an ( n 1 ) (n-1) -hyperball with radius r = 1 u 2 r=\sqrt{1-u^2} and ( n 1 ) (n-1) -volume r n 1 V n 1 r^{n-1}V_{n-1} . Thus V n = 1 1 ( 1 u 2 ) n 1 2 V n 1 d u = 2 V n 1 0 π 2 cos n t d t V_n=\int_{-1}^{1} (1-u^2)^{\frac{n-1}{2}}V_{n-1}du=2V_{n-1}\int_0^\frac{\pi}{2}\cos^nt\ dt . From introductory calculus we recall that 0 π 2 cos n t d t = ( n 1 ) ! ! n ! ! \int_0^\frac{\pi}{2}\cos^nt\ dt=\frac{(n-1)!!}{n!!} for odd n n , where n ! ! n!! denotes the double factorial. Thus V 2019 V 2018 = 2 ( 2018 ) ! ! 2019 ! ! \frac{V_{2019}}{V_{2018}}=\frac{2(2018)!!}{2019!!} . Since the numerator is even and the largest prime factor of the (odd) denominator is 2017, the answer is, fittingly for the occasion, 2019 \boxed{2019} .

Wow Sir!!!! I am amazed by your talent of transforming solutions which may seem pretty far fetched and use heavy machinery, into those which are simpler and easy to understand for people who are only introduced to calculus!!!! And also, a very Happy New Year, Sir.......!!

P.S. I found this a good read for today.......!!! Just thought to share it......:)

Aaghaz Mahajan - 2 years, 5 months ago
Mark Hennings
Jan 1, 2019

The volume of the n n -dimensional unit ball is V n = π 1 2 n Γ ( 1 2 n + 1 ) V_n \; = \; \frac{\pi^{\frac12n}}{\Gamma(\frac12n+1)} and hence V n + 1 V n = π n + 1 2 Γ ( 1 2 n + 1 ) π 1 2 n Γ ( 1 2 ( n + 1 ) + 1 ) = π Γ ( 1 2 n + 1 ) Γ ( 1 2 n + 3 2 ) \frac{V_{n+1}}{V_{n}} \; = \; \frac{\pi^{\frac{n+1}{2}}\Gamma(\frac12n+1)}{\pi^{\frac12n}\Gamma(\frac12(n+1)+1)} \; = \; \frac{\sqrt{\pi}\Gamma(\frac12n+1)}{\Gamma(\frac12n+\frac32)} In particular V 2 n + 1 V 2 n = π Γ ( n + 1 ) Γ ( n + 3 2 ) = 2 2 n + 1 ( n ! ) 2 ( 2 n + 1 ) ! \frac{V_{2n+1}}{V_{2n}} \; = \; \frac{\sqrt{\pi}\Gamma(n+1)}{\Gamma(n+\frac32)} \; = \; \frac{2^{2n+1}(n!)^2}{(2n+1)!} In the case n = 1009 n=1009 , we see that V 2019 V 2018 = p q \frac{V_{2019}}{V_{2018}} = \frac{p}{q} where q q is a factor of 2019 ! 2019! . Since 2 2019 ( 1009 ! ) 2 2^{2019}(1009!)^2 is not divisible by 2017 2017 , we deduce that the largest prime factor of q q is 2017 2017 . On the other hand, the index of 2 2 in 1009 ! 1009! is 1002 1002 , while the index of 2 2 in 2019 ! 2019! is 2011 2011 . Thus it is clear that p p is even while q q is odd, and so the smallest prime factor of p p is 2 2 , making the answer 2 + 2017 = 2019 2 + 2017 = \boxed{2019} .

Yes, indeed, once you have a formula for V n V_n , everything falls into place. Happy 2019, Mark!

Otto Bretscher - 2 years, 5 months ago

n 0 = 1 & n_0=1\&

Table [ n i = Evaluate [ FullSimplify [ Evaluate [ $#$1 $#$1 n i 1 ( $#$1 2 x 2 ) d x ] , $#$1 R $#$1 0 ] ] & , { i , Range [ 1 , 10 ] } ] \text{Table}\left[n_i=\text{Evaluate}\left[\text{FullSimplify}\left[\text{Evaluate}\left[\int_{-\text{\$\#\$1}}^{\text{\$\#\$1}} n_{i-1}\left(\sqrt{\text{\$\#\$1}^2-x^2}\right) \, dx\right],\text{\$\#\$1}\in \mathbb{R}\land \text{\$\#\$1}\geq 0\right]\right]\&,\{i,\text{Range}[1,10]\}\right]

{ 2 $#$1 & , π $#$1 2 & , 4 π $#$1 3 3 & , π 2 $#$1 4 2 & , 8 π 2 $#$1 5 15 & , π 3 $#$1 6 6 & , 16 π 3 $#$1 7 105 & , π 4 $#$1 8 24 & , 32 π 4 $#$1 9 945 & , π 5 $#$1 10 120 & } \left\{2 \text{\$\#\$1}\&,\pi \text{\$\#\$1}^2\&,\frac{4 \pi \text{\$\#\$1}^3}{3}\&,\frac{\pi ^2 \text{\$\#\$1}^4}{2}\&,\frac{8 \pi ^2 \text{\$\#\$1}^5}{15}\&,\frac{\pi ^3 \text{\$\#\$1}^6}{6}\&,\frac{16 \pi ^3 \text{\$\#\$1}^7}{105}\&,\frac{\pi ^4 \text{\$\#\$1}^8}{24}\&,\frac{32 \pi ^4 \text{\$\#\$1}^9}{945}\&,\frac{\pi ^5 \text{\$\#\$1}^{10}}{120}\&\right\}

Proof by induction gives:

v = π $#$1 2 $#$2 $#$1 Γ ( $#$1 2 + 1 ) & ; v=\frac{\pi ^{\frac{\text{\$\#\$1}}{2}} \text{\$\#\$2}^{\text{\$\#\$1}}}{\Gamma \left(\frac{\text{\$\#\$1}}{2}+1\right)}\&;

Then, as you said, the rest is simple:

v ( 2019 , 1 ) v ( 2018 , 1 ) \frac{v(2019,1)}{v(2018,1)} is

2 2012 3 5 2 7 2 1 1 2 1 3 2 19 \ 2 3 2 29 31 37 4 1 2 43 61 \ 73 79 101 103 113 127 131 149 \ 151 173 179 181 211 223 257 \ 263 269 271 277 281 283 337 \ 347 349 353 359 367 373 379 \ 383 389 397 401 509 521 523 \ 541 547 557 563 569 571 577 \ 587 593 599 601 607 613 617 \ 619 631 641 643 647 653 659 \ 661 673 1013 1019 1021 1031 1033 \ 1039 1049 1051 1061 1063 1069 1087 \ 1091 1093 1097 1103 1109 1117 1123 \ 1129 1151 1153 1163 1171 1181 1187 \ 1193 1201 1213 1217 1223 1229 1231 \ 1237 1249 1259 1277 1279 1283 1289 \ 1291 1297 1301 1303 1307 1319 1321 \ 1327 1361 1367 1373 1381 1399 1409 \ 1423 1427 1429 1433 1439 1447 1451 \ 1453 1459 1471 1481 1483 1487 1489 \ 1493 1499 1511 1523 1531 1543 1549 \ 1553 1559 1567 1571 1579 1583 1597 \ 1601 1607 1609 1613 1619 1621 1627 \ 1637 1657 1663 1667 1669 1693 1697 \ 1699 1709 1721 1723 1733 1741 1747 \ 1753 1759 1777 1783 1787 1789 1801 \ 1811 1823 1831 1847 1861 1867 1871 \ 1873 1877 1879 1889 1901 1907 1913 \ 1931 1933 1949 1951 1973 1979 1987 \ 1993 1997 1999 2003 2011 2017 \frac{ 2^{2012} }{ 3\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 19\cdot \ 23^{2}\cdot 29\cdot 31\cdot 37\cdot 41^{2}\cdot 43\cdot 61\cdot \ 73\cdot 79\cdot 101\cdot 103\cdot 113\cdot 127\cdot 131\cdot 149\cdot \ 151\cdot 173\cdot 179\cdot 181\cdot 211\cdot 223\cdot 257\cdot \\ \ 263\cdot 269\cdot 271\cdot 277\cdot 281\cdot 283\cdot 337\cdot \ 347\cdot 349\cdot 353\cdot 359\cdot 367\cdot 373\cdot 379\cdot \ 383\cdot 389\cdot 397\cdot 401\cdot 509\cdot 521\cdot 523\cdot \ 541\cdot 547\cdot 557\cdot 563\cdot \\ 569\cdot 571\cdot 577\cdot \ 587\cdot 593\cdot 599\cdot 601\cdot 607\cdot 613\cdot 617\cdot \ 619\cdot 631\cdot 641\cdot 643\cdot 647\cdot 653\cdot 659\cdot \ 661\cdot 673\cdot 1013\cdot 1019\cdot 1021\cdot 1031\cdot 1033\cdot \\ \ 1039\cdot 1049\cdot 1051\cdot 1061\cdot 1063\cdot 1069\cdot 1087\cdot \ 1091\cdot 1093\cdot 1097\cdot 1103\cdot 1109\cdot 1117\cdot 1123\cdot \ 1129\cdot 1151\cdot 1153\cdot 1163\cdot 1171\cdot 1181 \cdot \\ 1187\cdot \ 1193\cdot 1201\cdot 1213\cdot 1217\cdot 1223\cdot 1229\cdot 1231\cdot \ 1237\cdot 1249\cdot 1259\cdot 1277\cdot 1279\cdot 1283\cdot 1289\cdot \ 1291\cdot 1297\cdot 1301\cdot 1303\cdot 1307\cdot \\ 1319\cdot 1321\cdot \ 1327\cdot 1361\cdot 1367\cdot 1373\cdot 1381\cdot 1399\cdot 1409\cdot \ 1423\cdot 1427\cdot 1429\cdot 1433\cdot 1439\cdot 1447\cdot 1451\cdot \ 1453\cdot 1459\cdot 1471\cdot 1481\cdot \\ 1483\cdot 1487\cdot 1489\cdot \ 1493\cdot 1499\cdot 1511\cdot 1523\cdot 1531\cdot 1543\cdot 1549\cdot \ 1553\cdot 1559\cdot 1567\cdot 1571\cdot 1579\cdot 1583\cdot 1597\cdot \ 1601\cdot 1607\cdot 1609\cdot \\ 1613\cdot 1619\cdot 1621\cdot 1627\cdot \ 1637\cdot 1657\cdot 1663\cdot 1667\cdot 1669\cdot 1693\cdot 1697\cdot \ 1699\cdot 1709\cdot 1721\cdot 1723\cdot 1733\cdot 1741\cdot 1747\cdot \ 1753\cdot 1759\cdot \\ 1777\cdot 1783\cdot 1787\cdot 1789\cdot 1801\cdot \ 1811\cdot 1823\cdot 1831\cdot 1847\cdot 1861\cdot 1867\cdot 1871\cdot \ 1873\cdot 1877\cdot 1879\cdot 1889\cdot 1901\cdot 1907\cdot 1913\cdot \ 1931\cdot 1933\cdot \\ 1949\cdot 1951\cdot 1973\cdot 1979\cdot 1987\cdot \ 1993\cdot 1997\cdot 1999\cdot 2003\cdot 2011\cdot 2017 }

A Former Brilliant Member - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...