The Ideal Integral

Calculus Level 4

626 × 0 e x sin 25 x d x 0 e x sin 23 x d x = ? \large 626 \times \frac{\displaystyle \int_0^\infty e^{-x} \sin^{25}x \, dx}{\displaystyle \int_0^\infty e^{-x}\sin^{23}x \, dx} = \, ?


The answer is 600.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let us assume

I = 0 e x ( s i n 25 x ) d x Ι = \int_0^\infty e^{-x}(sin^{25}x)dx

By using the method of integration by-parts

I = e x s i n 25 x 0 I= \left . -e^{-x}sin^{25}x\right|_0^\infty + + 25 0 e x ( s i n 24 x ) ( c o s x ) d x 25\int_0^\infty e^{-x}(sin^{24}x)(cos x)dx

I = 0 + 25 [ ( e x s i n 24 x ) ( c o s x ) 0 + 0 e x ( 24 ( s i n 23 x ) ( c o s 2 x ) s i n 25 x ) ] d x I= 0 + 25[\left . (-e^{-x}sin^{24}x)(cos x)\right|_0^\infty + \int_0^\infty e^{-x}(24(sin^{23}x)(cos^{2}x) - sin^{25}x)]dx

I = 25 0 e x [ 24 ( s i n 23 x ) ( 1 s i n 2 x ) s i n 25 x ] d x I=25\int_0^\infty e^{-x}[24(sin^{23}x)(1-sin^{2}x) - sin^{25}x]dx

I = 25 0 e x [ 24 s i n 23 x 25 s i n 25 x ] d x I=25\int_0^\infty e^{-x}[24sin^{23}x - 25sin^{25}x]dx

I = 25 0 e x 24 s i n 23 x d x 625 0 e x s i n 25 x d x I=25\int_0^\infty e^{-x}24sin^{23}xdx - 625\int_0^\infty e^{-x}sin^{25}xdx

I = 600 0 e x s i n 23 x d x 625 I I=600\int_0^\infty e^{-x}sin^{23}xdx - 625I

626 I = 600 0 e x s i n 23 x d x 626I=600\int_0^\infty e^{-x}sin^{23}xdx

The given question can be written as

= 626 I 0 e x s i n 23 x d x =\frac{626I}{\int_0^\infty e^{-x}sin^{23}xdx}

= 600 0 e x s i n 23 x d x 0 e x s i n 23 x d x =600\frac{\int_0^\infty e^{-x}sin^{23}xdx}{\int_0^\infty e^{-x}sin^{23}xdx}

= 600 =600

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...