The immortal kite design!

Geometry Level 4

In the above quadrilateral A B C D ABCD , A B = 3 m AB=3\text{ m} , B C = 4 m BC=4\text{ m} , C D = 12 m CD=12\text{ m} , A D = 13 m AD=13\text{ m} and angle A B C = 9 0 ABC=90^{\circ} . If the angle B A D BAD is expressible in the form tan 1 ( a b ) \tan^{-1}(-\frac{a}{b}) , where a a and b b are coprime positive integers , find b a b-a .


The answer is -23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Join A C AC . Then by Pythagorean Theorem, A C = 5 m AC=5m . Subsequently, tr. A C D ACD is right-angled at A C D ACD since it is a 5 m 12 m 13 m 5m-12m-13m triangle.

Let angle C A D = x CAD=x and angle B A C = y BAC=y . Then tan x = 12 5 \tan x=\frac{12}{5} and tan y = 4 3 \tan y=\frac{4}{3} . Now,

tan ( x + y ) = tan x + tan y 1 tan x tan y \tan(x+y)=\frac{\tan x + \tan y}{1-\tan x \tan y}

tan ( x + y ) = 12 5 + 4 3 1 12 5 × 4 3 \implies \tan(x+y)=\frac{\frac{12}{5} + \frac{4}{3}}{1-\frac{12}{5} \times \frac{4}{3}}

tan ( x + y ) = 56 33 ( x + y ) = tan 1 ( 56 33 ) \implies \tan(x+y)=-\frac{56}{33} \implies (x+y)=\tan^{-1}(-\frac{56}{33}) a n g l e B A D = tan 1 ( 56 33 ) \implies angleBAD = \tan^{-1}(-\frac{56}{33})

Clearly, a = 56 a=56 and b = 33 b=33 . So, b a b-a gives us 23 \boxed{-23}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...