The importance of discriminant (2)

Algebra Level 4

a b = a 2 + 4 a b + b 2 2 a 2 b + 9 a b + 6 \large a \diamond b = \frac{\sqrt{a^2+4ab+b^2-2a-2b+9}}{ab+6}

If ( ( ( 2017 2016 ) 2015 ) 2 ) 1 ) = c d (( \cdots (2017 \diamond 2016) \diamond 2015) \diamond \cdots \diamond 2) \diamond 1) = \dfrac{\sqrt{c}}{d} , where c c and d d are square-free positive integers , find c + d c+d .


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tommy Li
Aug 6, 2017

Δ \Delta of a 2 + ( 4 b 2 ) a + ( b 2 2 b + 9 ) = ( 4 b 2 ) 2 4 ( b 2 2 b + 9 ) = 0 a^2+(4b-2)a+(b^2-2b+9) = (4b-2)^2-4(b^2-2b+9) = 0

b = 2 b = 2 or b = 4 3 b = -\frac{4}{3} (rej.)

a 2 = a 2 + 4 a ( 2 ) + 2 2 2 a 2 ( 2 ) + 9 2 a + 6 = ( a + 3 ) 2 2 ( a + 3 ) = 1 2 a \diamond 2 = \dfrac{\sqrt{a^2+4a(2)+2^2-2a-2(2)+9}}{2a+6} = \dfrac{\sqrt{(a+3)^2}}{2(a+3)} = \dfrac{1}{2}

( ( ( 2017 2016 ) 2015 ) 2 ) 1 ) = 1 2 1 = 37 13 (( \cdots (2017 \diamond 2016) \diamond 2015) \diamond \cdots \diamond 2) \diamond 1) = \dfrac{1}{2} \diamond 1 = \dfrac{\sqrt{37}}{13}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...