The Impossible Sum(Fixed)

Number Theory Level pending

I f If K n K_n (X)=mean how much can X be divided by n

For example

  • K 2 K_2 (8)=3

  • K 2 K_2 (5)=0

  • K 3 K_3 (9)=2

The Question is

  • Can i = 1 n m × X ( K n ( i ) ) i = 1 X ( K n ( i ) ) X \dfrac{\displaystyle\sum_{i=1}^{n^{m}×X}(K_n(i))-\displaystyle\sum_{i=1}^{X}(K_n(i))} {X} = a positive integer?

m \neq {1,2}, n \neq {1}, X \neq {1}

All n, m, X are positive integers

some number is right no yes

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ahmed Pro
Aug 2, 2020
  • i = 1 n m × X ( K n ( i ) ) \displaystyle\sum_{i=1}^{n^{m}×X}(K_n(i)) = i = 1 X ( K n ( i ) ) \displaystyle\sum_{i=1}^{X}(K_n(i)) + ( ( n m 1 ) × X n 1 \frac{(n^m-1)×X}{n-1} ) My Equation and i proved it \fbox{My Equation and i proved it}

So i = 1 n m × X ( K n ( i ) ) i = 1 X ( K n ( i ) ) \displaystyle\sum_{i=1}^{n^{m}×X}(K_n(i))-\displaystyle\sum_{i=1}^{X}(K_n(i)) = ( ( n m 1 ) × X n 1 \frac{(n^m-1)×X}{n-1} ) = A A

That means A ( n m 1 ) × X n 1 \dfrac{A}{\frac{(n^m-1)×X}{n-1}} = 1

And A X \frac{A} {X} = ( n m 1 ) × X n 1 X \frac{\frac{(n^m-1)×X}{n-1}}{X} = n m 1 n 1 \frac{n^m-1}{n-1}

And n m 1 n 1 \frac{n^m-1}{n-1} Always an integer, so A X \frac{A} {X} also an integer

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...