The inconsistency of numbers

Number Theory Level pending

If we know that 19 6 { 19 }^{ 6 } and 23 6 { 23 }^{ 6 } each have 7 factors.

How may factors does 23 6 19 6 { 23 }^{ 6 }-{ 19 }^{ 6 } have?


The answer is 96.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Dec 13, 2016

2 3 6 1 9 6 = ( 2 3 3 + 1 9 3 ) ( 2 3 3 1 9 3 ) = ( 23 + 19 ) ( 2 3 2 23 19 + 1 9 2 ) ( 23 19 ) ( 2 3 2 + 23 19 + 1 9 2 ) 23^{6} - 19^{6} = (23^{3} + 19^{3})(23^{3} - 19^{3}) = (23 + 19)(23^2 - 23\cdot19 + 19^2)(23 - 19)(23^2 + 23\cdot19 + 19^2)

or the prime factorization: 42 453 4 1327 = ( 2 3 7 ) ( 3 151 ) ( 2 2 ) ( 1327 ) = 2 3 3 2 7 1 15 1 1 132 7 1 . 42 \cdot 453 \cdot 4 \cdot 1327 = (2\cdot3\cdot7)(3\cdot151)(2^2)(1327) = 2^3 \cdot 3^2 \cdot 7^1 \cdot 151^1 \cdot 1327^1.

Hence, 2 3 6 1 9 6 23^6 - 19^6 has 4 3 2 2 2 = 96 4 \cdot 3 \cdot 2 \cdot 2 \cdot 2 = \boxed{96} positive integer factors.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...