The Index Is n n

Algebra Level 3

If x + 1 x = 2 , x + \dfrac1x = 2, then evaluate x n + 1 x n . x^n + \dfrac1{x^n} .

1 2 n n None of the options above

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

. .
Apr 2, 2021

I've reported this problem.

But, I will know it as x + 1 x = 2 \displaystyle x + \frac { 1 } { x } = 2 .

Then, multiplying x x to each number.

And, we get x 2 + 1 = 2 x x ^ { 2 } + 1 = 2x .

So, x 2 2 x + 1 = 0 ( x 1 ) 2 = 0 x 1 = 0 x = 1 x ^ { 2 } - 2x + 1 = 0 \Rightarrow ( x - 1 ) ^ { 2 } = 0 \Rightarrow x - 1 = 0 \Rightarrow x = 1 .

Then, 1 n + ( 1 1 ) n = 1 n + 1 n \displaystyle 1 ^ { n } + ( \frac { 1 } { 1 } ) ^ { n } = 1 ^ { n } + 1 ^ { n } .

If the base is one, then it is always one despite the exponents are any number excepting \infty .

But, \infty is not in the whole real numbers, so 1 + 1 = 2 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1 + 1 = \boxed { 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! }

Mahdi Raza
Aug 5, 2020
  • We find the value of x x first

x + 1 x = 2 x + 1 = 2 x [ x 0 ] x = 1 \dfrac{x+1}{x} = 2 \quad \implies \quad x+1 = 2x \quad [x \ne 0] \quad \implies \quad x = 1

  • The value to find is

x n + 1 x n 1 n + 1 n = 2 x^n + \dfrac{1}{x}^n \implies 1^n + 1^n = \boxed{2}

x 2 , x = 1 x \neq 2 , x =1

Vinayak Srivastava - 9 months, 1 week ago

Log in to reply

Uh yes, typo.

Mahdi Raza - 9 months, 1 week ago
Zico Quintina
May 17, 2018

Since x x is clearly positive, we can apply AM-GM:

x + 1 x 2 x 1 x x + 1 x 2 1 x + 1 x 2 \begin{aligned} \dfrac{x + \dfrac{1}{x}}{2} &\ge \sqrt{x \cdot \dfrac{1}{x}} \\ \\ \dfrac{x + \dfrac{1}{x}}{2} &\ge 1 \\ \\ x + \dfrac{1}{x} &\ge 2 \end{aligned}

with equality iff x = 1 x x = \dfrac{1}{x} . Thus x 2 = 1 x^2 = 1 , so x = 1 x = 1 (as x x can't be negative.) \ Our answer then is x n + ( 1 x ) n = 1 n + 1 n = 2 x^n + \left( \dfrac{1}{x} \right)^n = 1^n + 1^n = \boxed{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...