If x + x 1 = 2 , then evaluate x n + x n 1 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
x x + 1 = 2 ⟹ x + 1 = 2 x [ x = 0 ] ⟹ x = 1
x n + x 1 n ⟹ 1 n + 1 n = 2
x = 2 , x = 1
Since x is clearly positive, we can apply AM-GM:
2 x + x 1 2 x + x 1 x + x 1 ≥ x ⋅ x 1 ≥ 1 ≥ 2
with equality iff x = x 1 . Thus x 2 = 1 , so x = 1 (as x can't be negative.) Our answer then is x n + ( x 1 ) n = 1 n + 1 n = 2
Problem Loading...
Note Loading...
Set Loading...
I've reported this problem.
But, I will know it as x + x 1 = 2 .
Then, multiplying x to each number.
And, we get x 2 + 1 = 2 x .
So, x 2 − 2 x + 1 = 0 ⇒ ( x − 1 ) 2 = 0 ⇒ x − 1 = 0 ⇒ x = 1 .
Then, 1 n + ( 1 1 ) n = 1 n + 1 n .
If the base is one, then it is always one despite the exponents are any number excepting ∞ .
But, ∞ is not in the whole real numbers, so 1 + 1 = 2 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !