The Inequality

Algebra Level 5

Find the sum of all the lengths of range of real x x satisfying the inequality below:

k = 1 70 k x k 5 4 \sum_{k=1}^{70} \frac {k}{x-k} \geq \frac 54


The answer is 1988.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Prakkash Manohar
May 16, 2016

Relevant wiki: Function Graphs

Writing the sigma notation in the series form we get, 1 x 1 + 2 x 2 + 3 x 3 + + 70 x 70 5 4 \frac {1}{x-1} + \frac {2}{x-2} + \frac {3}{x-3} + \ldots + \frac {70}{x-70} \geq \frac {5}{4} .

Now, the most important part of the solution:

Draw the graph of the functions y = 1 x 1 + 2 x 2 + 3 x 3 + + 70 x 70 y = \frac {1}{x-1} + \frac {2}{x-2} + \frac {3}{x-3} + \ldots + \frac {70}{x-70} and y = 5 4 y = \frac {5}{4} based on logic and deduction.

By logic and deduction, I mean, performing some substitutions in the equation. eg . substituting any x N 70 x \in N \leq 70 , we see that the first function tends towards \infty and so on..

where the set ( 1 , x 1 ] ( 2 , x 2 ] ( 3 , x 3 ] ( 70 , x 70 ] (1,x_1] \cup (2,x_2] \cup (3,x_3] \ldots (70,x_{70}] satisfies the given inequality, then, we have to calculate x 1 1 + x 2 2 + x 3 3 + + x 70 70 x_1-1 + x_2-2 + x_3-3 + \ldots + x_{70}-70 .

= x 1 + x 2 + x 3 + + x 70 ( 1 + 2 + 3 + + 70 ) = x_1 + x_2 + x_3 + \ldots + x_{70} - (1+2+3+\ldots+70)

Since x 1 , x 2 , x 3 , , x 70 x_1, x_2, x_3, \ldots , x_{70} are the roots of the equation 1 x 1 + 2 x 2 + 3 x 3 + + 70 x 70 = 5 4 \frac {1}{x-1} + \frac {2}{x-2} + \frac {3}{x-3} + \ldots + \frac {70}{x-70} = \frac {5}{4} , the value of x 1 + x 2 + x 3 + + x 70 x_1 + x_2 + x_3 + \ldots + x_{70} can be obtained by applying Vieta's formula for the sum of roots in the above equation.

So, simplifying the above equation, we get, ( x 2 ) ( x 3 ) ( x 70 ) + 2 ( x 1 ) ( x 3 ) ( x 70 ) + + 70 ( x 1 ) ( x 2 ) ( x 69 ) = 5 4 ( x 1 ) ( x 2 ) ( x 3 ) ( x 70 ) (x-2)(x-3) \ldots (x-70) + 2 (x-1)(x-3) \ldots (x-70) + \ldots + 70(x-1)(x-2) \ldots (x-69) = \frac{5}{4} (x-1)(x-2)(x-3) \ldots (x-70)

Transferring everything to the Right hand side, we get the following on the right side,

5 4 x 70 5 4 x 69 ( 1 + 2 + 3 + + 70 ) x 69 ( 1 + 2 + 3 + + 70 ) + \frac{5}{4}x^{70} -\frac{5}{4}x^{69}(1+ 2+ 3+ \ldots + 70) -x^{69}(1+ 2+ 3+ \ldots + 70) + \ldots (other terms)

So, sum of roots, x 1 + x 2 + x 3 + + x 70 = 9 5 ( 1 + 2 + 3 + + 70 ) x_1 + x_2 + x_3 + \ldots + x_{70} = \frac{9}{5} (1+ 2+ 3+ \ldots + 70)

So, the value of x 1 + x 2 + x 3 + + x 70 ( 1 + 2 + 3 + + 70 ) = 9 5 ( 1 + 2 + 3 + + 70 ) ( 1 + 2 + 3 + + 70 ) x_1 + x_2 + x_3 + \ldots + x_{70} - (1+2+3+\ldots+70) = \frac{9}{5} (1+ 2+ 3+ \ldots + 70) - (1+ 2+ 3+ \ldots + 70)

= 4 5 ( 1 + 2 + 3 + + 70 ) = \frac{4}{5} (1+ 2+ 3+ \ldots + 70)

= 4 5 × 71 × 70 2 = \frac{4}{5} \times \frac{71 \times 70}{2}

= 4 × 497 = 4 \times 497 = 1988 = \boxed{1988}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...