Find the sum of all the lengths of range of real satisfying the inequality below:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Function Graphs
Writing the sigma notation in the series form we get, x − 1 1 + x − 2 2 + x − 3 3 + … + x − 7 0 7 0 ≥ 4 5 .
Now, the most important part of the solution:
Draw the graph of the functions y = x − 1 1 + x − 2 2 + x − 3 3 + … + x − 7 0 7 0 and y = 4 5 based on logic and deduction.
By logic and deduction, I mean, performing some substitutions in the equation. eg . substituting any x ∈ N ≤ 7 0 , we see that the first function tends towards ∞ and so on..
where the set ( 1 , x 1 ] ∪ ( 2 , x 2 ] ∪ ( 3 , x 3 ] … ( 7 0 , x 7 0 ] satisfies the given inequality, then, we have to calculate x 1 − 1 + x 2 − 2 + x 3 − 3 + … + x 7 0 − 7 0 .
= x 1 + x 2 + x 3 + … + x 7 0 − ( 1 + 2 + 3 + … + 7 0 )
Since x 1 , x 2 , x 3 , … , x 7 0 are the roots of the equation x − 1 1 + x − 2 2 + x − 3 3 + … + x − 7 0 7 0 = 4 5 , the value of x 1 + x 2 + x 3 + … + x 7 0 can be obtained by applying Vieta's formula for the sum of roots in the above equation.
So, simplifying the above equation, we get, ( x − 2 ) ( x − 3 ) … ( x − 7 0 ) + 2 ( x − 1 ) ( x − 3 ) … ( x − 7 0 ) + … + 7 0 ( x − 1 ) ( x − 2 ) … ( x − 6 9 ) = 4 5 ( x − 1 ) ( x − 2 ) ( x − 3 ) … ( x − 7 0 )
Transferring everything to the Right hand side, we get the following on the right side,
4 5 x 7 0 − 4 5 x 6 9 ( 1 + 2 + 3 + … + 7 0 ) − x 6 9 ( 1 + 2 + 3 + … + 7 0 ) + … (other terms)
So, sum of roots, x 1 + x 2 + x 3 + … + x 7 0 = 5 9 ( 1 + 2 + 3 + … + 7 0 )
So, the value of x 1 + x 2 + x 3 + … + x 7 0 − ( 1 + 2 + 3 + … + 7 0 ) = 5 9 ( 1 + 2 + 3 + … + 7 0 ) − ( 1 + 2 + 3 + … + 7 0 )
= 5 4 ( 1 + 2 + 3 + … + 7 0 )
= 5 4 × 2 7 1 × 7 0
= 4 × 4 9 7 = 1 9 8 8