The \infty -radical madness 2

Algebra Level 5

Let A : = 8 8 8 + 8 8 8 + A:=\sqrt{8-\sqrt{8-\sqrt{8+\sqrt{8-\sqrt{8-\sqrt{8+\cdots}}}}}} B : = 9 + 9 9 + 9 9 + 9 9 + 9 9 + 3 3 3 3 3 B:=\sqrt[3]{9+9\sqrt[3]{9+9\sqrt[3]{9+9\sqrt[3]{9+9\sqrt[3]{9+\cdots}}}}} Find B A B-A .

Details and assumptions:

The sign pattern in the first radical is ( + ) (--+) .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let A = 8 b A=\sqrt{8-b} , b = 8 c b=\sqrt{8-c} and c = 8 + A c=\sqrt{8+A} . Then A 2 = 8 b A^2=8-b , b 2 = 8 c b^2=8-c and c 2 = 8 + A c^2=8+A . Let A = a A=-a , then we have the following system: a 2 = 8 b ( 1 ) b 2 = 8 c ( 2 ) c 2 = 8 a ( 3 ) \begin{aligned} a^2 &= 8-b & \cdots (1)\\ b^2 &= 8-c & \cdots (2)\\ c^2 &= 8-a & \cdots (3) \end{aligned} Let m = a + b + c m=a+b+c , n = a b + b c + c a n=ab+bc+ca and p = a b c p=abc . Sum (1), (2) and (3) to obtain: a 2 + b 2 + c 2 = 24 ( a + b + c ) m 2 2 n = 24 m n = 1 2 m 2 + 1 2 m 12 ( 4 ) \begin{aligned} a^2+b^2+c^2 &= 24-(a+b+c)\\ m^2-2n &= 24-m\\ n &= \dfrac{1}{2}m^2+\dfrac{1}{2}m-12 & \cdots (4) \end{aligned} Subtract (1)-(2), (2)-(3) and (3)-(1): a 2 b 2 = ( b c ) ( a + b ) ( a b ) = ( b c ) ( 5 ) b 2 c 2 = ( c a ) ( b + c ) ( b c ) = ( c a ) ( 6 ) c 2 a 2 = ( a b ) ( c + a ) ( c a ) = ( a b ) ( 7 ) \begin{aligned} a^2-b^2 &= -(b-c) &\implies (a+b)(a-b) &= -(b-c) & \cdots (5)\\ b^2-c^2 &= -(c-a) &\implies (b+c)(b-c) &= -(c-a) & \cdots (6)\\ c^2-a^2 &= -(a-b) &\implies (c+a)(c-a) &= -(a-b) & \cdots (7) \end{aligned} Multiply (5), (6) and (7), and remember that a a , b b and c c are all distinct: ( a + b ) ( a b ) ( b + c ) ( b c ) ( c + a ) ( c a ) = ( a b ) ( b c ) ( c a ) ( a + b ) ( b + c ) ( c + a ) = 1 m n p = 1 p = m n + 1 ( 8 ) \begin{aligned} (a+b)(a-b)(b+c)(b-c)(c+a)(c-a) & =-(a-b)(b-c)(c-a)\\ (a+b)(b+c)(c+a) &= -1\\ mn-p &= -1\\ p &= mn+1 & \cdots (8) \end{aligned} We also have, using (1), (2) and (3): b ( 8 b 2 ) = ( 8 a 2 ) c 8 b b 3 = 8 c c a 2 ( 9 ) c ( 8 c 2 ) = ( 8 b 2 ) a 8 c c 3 = 8 a a b 2 ( 10 ) a ( 8 a 2 ) = ( 8 c 2 ) b 8 a a 3 = 8 b b c 2 ( 11 ) \begin{aligned} b(8-b^2)=(8-a^2)c &\implies 8b-b^3=8c-ca^2 & \cdots (9)\\ c(8-c^2)=(8-b^2)a &\implies 8c-c^3=8a-ab^2 & \cdots (10)\\ a(8-a^2)=(8-c^2)b &\implies 8a-a^3=8b-bc^2 & \cdots (11)\\ \end{aligned} Sum (9), (10) and (11): a 3 + b 3 + c 3 = a b 2 + b c 2 + c a 2 m 3 3 m n + 3 p = a b 2 + b c 2 + c a 2 ( 12 ) \begin{aligned} a^3+b^3+c^3 &= ab^2+bc^2+ca^2\\ m^3-3mn+3p &= ab^2+bc^2+ca^2 & \cdots (12) \end{aligned} Multiply (1) by c c , (2) by a a and (3) by b b : b c = 8 c c a 2 ( 13 ) c a = 8 a a b 2 ( 14 ) a b = 8 b b c 2 ( 15 ) \begin{aligned} bc &= 8c-ca^2 & \cdots (13)\\ ca &= 8a-ab^2 & \cdots (14)\\ ab &= 8b-bc^2 & \cdots (15) \end{aligned} Sum (13), (14) and (15): a b + b c + c a = 8 ( a + b + c ) ( a b 2 + b c 2 + c a 2 ) a b 2 + b c 2 + c a 2 = 8 m n ( 16 ) \begin{aligned} ab+bc+ca &= 8(a+b+c)-(ab^2+bc^2+ca^2)\\ ab^2+bc^2+ca^2 &= 8m-n & \cdots (16) \end{aligned} Equate (12) and (16): m 3 3 m n + 3 p = 8 m n ( 17 ) \begin{aligned} m^3-3mn+3p &= 8m-n & \cdots (17) \end{aligned} Substitute (8) in (17): m 3 3 m n + 3 ( m n + 1 ) = 8 m n m 3 + 3 = 8 m n ( 18 ) \begin{aligned} m^3-3mn+3(mn+1) &= 8m-n\\ m^3+3 &= 8m-n & \cdots (18) \end{aligned} Substitute (4) in (18): m 3 + 3 = 8 m ( 1 2 m 2 + 1 2 m 12 ) m 3 + 1 2 m 2 15 2 m 9 = 0 ( m 3 ) ( m + 2 ) ( m + 3 2 ) = 0 ( 19 ) \begin{aligned} m^3+3 &= 8m-\left(\dfrac{1}{2}m^2+\dfrac{1}{2}m-12\right)\\ m^3+\dfrac{1}{2}m^2-\dfrac{15}{2}m-9 &= 0\\ (m-3)(m+2)\left(m+\dfrac{3}{2}\right) &= 0 & \cdots (19) \end{aligned} From (19), (4) and (8) we obtain the solutions ( m , n , p ) = ( 3 , 6 , 17 ) (m,n,p)=(3,-6,-17) , ( m , n , p ) = ( 2 , 11 , 23 ) (m,n,p)=(-2,-11,23) and ( m , n , p ) = ( 3 2 , 93 8 , 295 16 ) (m,n,p)=\left(-\dfrac{3}{2},-\dfrac{93}{8},\dfrac{295}{16}\right) . Since a < 0 a<0 and b , c > 0 b,c>0 , then p = a b c < 0 p=abc<0 , so the only solution is ( m , n , p ) = ( 3 , 6 , 17 ) (m,n,p)=(3,-6,-17) .

Let P ( z ) P(z) have roots a , b , c a,b,c . Then P ( z ) = z 3 3 z 2 6 z + 17 P(z)=z^3-3z^2-6z+17 , so we have to solve z 3 3 z 2 6 z + 17 = 0 z^3-3z^2-6z+17=0 . Let z = z + 1 z=z'+1 , then the equation becomes z 3 9 z + 9 = 0 {z'}^3-9{z'}+9=0 . Since a = A a=-A we have ( A 1 ) 3 9 ( A 1 ) + 9 = 0 ( 20 ) \begin{aligned} (-A-1)^3-9(-A-1)+9 &= 0 & \cdots (20) \end{aligned}

To find B B notice that B = 9 + 9 B 3 B=\sqrt[3]{9+9B} , then: B 3 9 B 9 = 0 ( 21 ) \begin{aligned} B^3-9B-9 &= 0 & \cdots (21) \end{aligned} Sum (20) and (21): ( A 1 ) 3 + B 3 9 ( A + B 1 ) = 0 ( A + B 1 ) ( ( A 1 ) 2 ( A 1 ) B + B 2 ) 9 ( A + B 1 ) = 0 ( A + B 1 ) ( A 2 + 2 A + 1 + A B + B + B 2 9 ) = 0 \begin{aligned} (-A-1)^3+B^3-9(-A+B-1) &= 0\\ (-A+B-1)((-A-1)^2-(-A-1)B+B^2)-9(-A+B-1) &= 0\\ (-A+B-1)(A^2+2A+1+AB+B+B^2-9) &= 0 \end{aligned} Since the second factor cannot be zero (left as an exercise), we must have A + B 1 = 0 -A+B-1=0 , or B A = 1 \boxed{B-A=1} .

Is there any other method to solve the problem?

Venkatesh A - 2 years, 1 month ago
Frank Petiprin
Sep 22, 2017
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
import numpy as np
#Numerical solution written in Pythonista
# Initialize Variables
# num9 is the number of 9 and must be odd
num9=101
loopc=np.int(np.divide((num9-1),2))
croot=np.divide(1,3)
sqr9=pow(9,croot)
for n in range(0,loopc):
  sqr9=pow((9+9*sqr9),croot)
#num8 is the number of  8 and must be divisble by 3
sqr8 = 0
num8=102
loopc=np.int(np.divide(num8,3))
for n in range(0,loopc):
  sqr8=np.sqrt(8+sqr8)
  sqr8=np.sqrt(8-sqr8)
sqr8=np.sqrt(8-sqr8)
finalans=sqr9-sqr8
print(' sqr8=',sqr8,'sqr9=',sqr9,'difference=',finalans)
#Run Of Program
sqr8=2.409858418337631 sqr9=3.411474127809772 difference=1.0016157094721412

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...