The \infty -Radical Madness 3

Calculus Level 5

Let R 1 = 21 16 + 21 16 + 21 16 + 21 16 + 21 16 + . . . R_1=\sqrt{\frac{21}{16}+\sqrt{\frac{21}{16}+\sqrt{\frac{21}{16}+\sqrt{\frac{21}{16}+\sqrt{\frac{21}{16}+...}}}}} R 2 = 21 16 21 16 21 16 21 16 21 16 . . . R_2=\sqrt{\frac{21}{16}-\sqrt{\frac{21}{16}-\sqrt{\frac{21}{16}-\sqrt{\frac{21}{16}-\sqrt{\frac{21}{16}-...}}}}} R 3 = 21 16 + 21 16 21 16 + 21 16 21 16 + . . . R_3=\sqrt{\frac{21}{16}+\sqrt{\frac{21}{16}-\sqrt{\frac{21}{16}+\sqrt{\frac{21}{16}-\sqrt{\frac{21}{16}+...}}}}} R 4 = 21 16 21 16 + 21 16 21 16 + 21 16 . . . . R_4=\sqrt{\frac{21}{16}-\sqrt{\frac{21}{16}+\sqrt{\frac{21}{16}-\sqrt{\frac{21}{16}+\sqrt{\frac{21}{16}-...}}}}}.

Given that the values of the four infinitely nested radical expressions above can be expressed

R 1 = p 1 q , R 2 = p 2 q , R 3 = p 3 q , R 4 = p 4 q R_1=\frac{p_1}{q}, R_2=\frac{p_2}{q}, R_3=\frac{p_3}{q}, R_4=\frac{p_4}{q}

where p 1 , p 2 , p 3 , p 4 , q p_1, p_2,p_3,p_4, q are positive integers with gcd ( p i , q ) = 1 \gcd(p_i,q) = 1 for 1 i 4 1\leq i\leq 4 , find p 1 + p 2 + p 3 + p 4 . p_1+p_2+p_3+p_4.

Clarification: as a sequence, R 4 R_4 is defined in the following way: R 4 1 : = 21 16 , R 4 n : = 21 16 21 16 + R 4 n 1 , R_4^1:=\sqrt{\frac{21}{16}}, R_4^n:=\sqrt{\frac{21}{16}-\sqrt{\frac{21}{16}+R_4^{n-1}}}, where R 4 n R_4^n is n n -th term of the sequence. R 4 : = lim n R 4 n . R_4 := \lim_{n\to\infty} R_4^n.

R 3 R_3 is defined analogously.

Warning: in R 4 R_4 you may need to extract square root from a negative number. This root is always principal (i.e 2 = i 2 \sqrt{-2}=i\sqrt{2} , not i 2 -i\sqrt{2} ).


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

P C
Feb 24, 2016

We see that R 1 = 21 16 + R 1 R_1=\sqrt{\frac{21}{16}+R_1} R 2 = 21 16 R 2 R_2=\sqrt{\frac{21}{16}-R_2} Solving and we get R 1 = 7 4 ; R 2 = 3 4 R_1=\frac{7}{4} ; R_2=\frac{3}{4} .

Now for R 3 R_3 and R 4 R_4 , we create a system of equation { R 3 = 21 16 + R 4 R 4 = 21 16 R 3 \begin{cases} R_3=\sqrt{\frac{21}{16}+R_4}\\R_4=\sqrt{\frac{21}{16}-R_3}\end{cases} Solving it and we get { R 3 = 5 4 R 4 = 1 4 \begin{cases} R_3=\frac{5}{4}\\R_4=\frac{1}{4}\end{cases} .So now { p 1 = 7 p 2 = 3 p 3 = 5 p 4 = 1 \begin{cases} p_1=7\\ p_2=3\\ p_3=5\\p_4=1\end{cases} p 1 + p 2 + p 3 + p 4 = 16 \Rightarrow p_1+p_2+p_3+p_4=16

Finding the fixed points is the easy part... the challenge is to verify convergence!

Otto Bretscher - 5 years, 3 months ago

Algebric ways.Not calculus...

Son Nguyen - 5 years, 3 months ago

Log in to reply

Convergence involves calculus, by definition ;)

Otto Bretscher - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...