The Integral is Gold.

Level pending

Find the positive value of b b for which 1 b f ( x ) f ( 1 + b x ) + f ( x ) d x = b 2 2 \displaystyle\int_{-1}^{b} \dfrac{f(x)}{f(-1 + b - x) + f(x)} dx = \dfrac{b^2}{2} .

Express b b to five decimal places.


The answer is 1.61803.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Nov 21, 2019

In General to prove: a b f ( x ) f ( a + b x ) + f ( x ) d x = b a 2 \displaystyle\int_{a}^{b} \dfrac{f(x)}{f(a + b - x) + f(x)} dx = \dfrac{b - a}{2}

Let I = a b f ( x ) f ( a + b x ) + f ( x ) d x I = \displaystyle\int_{a}^{b} \dfrac{f(x)}{f(a + b - x) + f(x)} dx and u = a + b x u = a + b - x

I = a b f ( a + b u ) f ( u ) + f ( a + b u ) d u \implies I = \displaystyle\int_{a}^{b} \dfrac{f(a + b - u)}{f(u) + f(a + b - u)} du

Since u u is a dummy variable we can replace u u by x x to obtain:

I = a b f ( a + b x ) f ( x ) + f ( a + b x ) d x I = \displaystyle\int_{a}^{b} \dfrac{f(a + b - x)}{f(x) + f(a + b - x)} dx

Adding I = a b f ( x ) f ( a + b x ) + f ( x ) d x I = \displaystyle\int_{a}^{b} \dfrac{f(x)}{f(a + b - x) + f(x)} dx and I = a b f ( a + b x ) f ( x ) + f ( a + b x ) d x I = \displaystyle\int_{a}^{b} \dfrac{f(a + b - x)}{f(x) + f(a + b - x)} dx

2 I = a b d x I = b a 2 \implies 2I = \displaystyle\int_{a}^{b} dx \implies \boxed{I = \dfrac{b - a}{2}} .

Using the above result 1 b f ( x ) f ( 1 + b x ) + f ( x ) d x = \implies \displaystyle\int_{-1}^{b} \dfrac{f(x)}{f(-1 + b - x) + f(x)} dx = b + 1 2 = b 2 2 \dfrac{b + 1}{2} = \dfrac{b^2}{2}

b 2 b 1 = 0 \implies b^2 - b - 1 = 0

Using the positive root we obtain b = 1 + 5 2 = ϕ 1.61803 b = \dfrac{1 + \sqrt{5}}{2} = \phi \approx \boxed{1.61803}

\therefore The desired integral is: 1 ϕ f ( x ) f ( ϕ 1 x ) + f ( x ) d x = ϕ + 1 2 = 1 + 5 2 + 1 2 = 3 + 5 2 2 = ϕ 2 2 \displaystyle\int_{-1}^{\phi} \dfrac{f(x)}{f(\phi - 1 - x) + f(x)} dx = \dfrac{\phi + 1}{2} = \dfrac{\dfrac{1 + \sqrt{5}}{2} + 1}{2} = \dfrac{\dfrac{3 + \sqrt{5}}{2}}{2} = \dfrac{\phi^2}{2} .

As an example using f ( x ) = x 2 f(x) = x^2 and G ( x ) = x 2 ( ϕ 1 x ) 2 + x 2 G(x) = \dfrac{x^2}{(\phi - 1 - x)^2 + x^2} the graph below shows the area of the region bounded by G ( x ) G(x) on [ 1 , ϕ ] [-1,\phi] .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...