the integration 22

Calculus Level 2

π 2 2 π cos x 2 x d x = ? \large \int_\frac \pi 2^{2\pi} \frac {\left \lceil \cos \frac x2 \right \rceil}x dx = \ ?


The answer is 0.6931.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 29, 2020

I = π 2 2 π cos x 2 x d x = π 2 π cos x 2 x d x + π 2 π cos x 2 x d x = π 2 π 1 x d x + π 2 π 0 x d x = ln x π 2 π = ln π π 2 = ln 2 0.693 \begin{aligned} I & = \int_\frac \pi 2^{2\pi} \frac {\left \lceil \cos \frac x 2 \right \rceil}x dx \\ & = \int_\frac \pi 2^\pi \frac {\left \lceil \cos \frac x 2 \right \rceil}x dx + \int_\pi^{2\pi} \frac {\left \lceil \cos \frac x 2 \right \rceil}x dx \\ & = \int_\frac \pi 2^\pi \frac 1x dx + \int_\pi^{2\pi} \frac 0x dx \\ & = \ln x \bigg|_\frac \pi 2^\pi = \ln \frac \pi {\frac \pi 2} = \ln 2 \approx \boxed{0.693} \end{aligned}

@Chew-Seong Cheong it should be cos(x/2), not cos(pi/2).

Chiang Jun Siang - 11 months, 2 weeks ago

Log in to reply

Thanks. I have changed it.

Chew-Seong Cheong - 11 months, 2 weeks ago

The value of the integral is ln π ln ( π 2 ) = ln 2 0.6931 \ln π-\ln (\frac{π}{2})=\ln 2\approx \boxed {0.6931} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...