The integration ratio

Calculus Level 5

I n = 0 π e x ( sin x ) n d x \large{I_{n}=\displaystyle \int^{\pi}_{0} e^{x}(\sin x)^{n} \, dx}

Define I n I_n as the integral above. If I 5 I 1 = a b \large{\dfrac{I_{5}}{I_{1}}=\dfrac{a}{b}} where a , b a,b are coprime integers, find a + b a+b .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We try finding reduction formula. Consider

I n = 0 π ( sin x ) n d e x = e x ( sin x ) n n 0 π e x ( sin x ) n 1 cos x d x \displaystyle I_{n}=\int_{0}^{\pi} (\sin{x})^{n} d e^{x}= e^{x}(\sin{x})^{n}-n\int_{0}^{\pi} e^{x}(\sin{x})^{n-1} \cos{x} dx The first term is 0 provided that n is positive.

I n = n 0 π ( sin x ) n 1 cos x d e x = n ( sin x ) n 1 cos x e x + n 0 π e x [ ( n 1 ) ( sin x ) n 2 cos 2 x ( sin x ) n ] d x \displaystyle I_{n}=-n\int_{0}^{\pi} (\sin{x})^{n-1} \cos{x} d e^{x}=-n(\sin{x})^{n-1} \cos{x} e^{x}+n\int_{0}^{\pi} e^{x}[(n-1)(\sin{x})^{n-2} \cos^{2}{x}-(\sin{x})^{n}] dx The first term is again 0 provided n greater than 1. After simplifying the expression, we have

I n = n ( n 1 ) n 2 + 1 I n 2 \displaystyle I_{n}=\dfrac{n(n-1)}{n^{2}+1} I_{n-2}

So,

I 5 = 5 4 3 2 26 10 I 1 \displaystyle I_{5}=\dfrac{5 \cdot 4 \cdot 3 \cdot 2}{26 \cdot 10} I_{1} which implies a b = 6 / 13 \displaystyle \dfrac{a}{b}=6/13 and a + b = 19 \displaystyle a+b=\boxed{19}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...