the integration23

Calculus Level 3

0 tan 1 ( 3 x 3 ) tan 1 ( x 3 ) x d x = ? \int_0^\infty \frac {\tan^{-1}(3x^3)-\tan^{-1}(x^3)}x dx =\ ?


The answer is 0.5752.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 29, 2020

The integral can be solved using differentiation under the integral sign .

I ( a ) = 0 tan 1 ( a x 3 ) tan 1 ( x 3 ) x d x I ( a ) a = 0 x 2 1 + a 2 x 6 d x Let u = a 2 x 6 d u = 6 a 2 x 5 d x = 1 6 a 0 u 1 2 1 + u d u Beta function B ( m , n ) = 0 u m 1 ( 1 + u ) m + n d u = 1 6 a B ( 1 2 , 1 2 ) and B ( m , n ) = Γ ( m ) Γ ( n ) Γ ( m + n ) = Γ 2 ( 1 2 ) 6 a Γ ( 1 ) and Γ ( 1 2 ) = π = π 6 a I ( a ) = π 6 a d a = π ln a 6 + C where C is the constant of integration. I ( 1 ) = C = 0 I ( a ) = π ln a 6 \begin{aligned} I(a) & = \int_0^\infty \frac {\tan^{-1}(ax^3)-\tan^{-1}(x^3)}x dx \\ \frac {\partial I(a)}{\partial a} & = \int_0^\infty \frac {x^2}{1+a^2x^6} dx & \small \blue{\text{Let }u = a^2x^6 \implies du = 6a^2 x^5 \ dx} \\ & = \frac 1{6a} \int_0^\infty \frac {u^{-\frac 12}}{1+u} du & \small \blue{\text{Beta function B }(m,n) = \int_0^\infty \frac {u^{m-1}}{(1+u)^{m+n}} du} \\ & = \frac 1{6a} \text{ B }\left(\frac 12, \frac 12 \right) & \small \blue{\text{and B }(m,n) = \frac {\Gamma(m)\Gamma(n)}{\Gamma(m+n)}} \\ & = \frac {\Gamma^2 \left(\frac 12 \right)}{6a \Gamma (1)} & \small \blue{\text{and }\Gamma \left(\frac 12 \right) = \sqrt \pi} \\ & = \frac \pi {6a} \\ \implies I(a) & = \int \frac \pi {6a} da = \frac {\pi \ln a}6 + \blue C & \small \blue{\text{where }C \text{ is the constant of integration.}} \\ I(1) & = C = 0 \\ \implies I(a) & = \frac {\pi \ln a}6 \end{aligned}

Therefore 0 tan 1 ( 3 x 3 ) tan 1 ( x 3 ) x d x = I ( 3 ) = π 6 ln 3 0.575 \displaystyle \int_0^\infty \frac {\tan^{-1}(3x^3) - \tan^{-1}(x^3)}x dx = I(3) = \frac \pi 6 \ln 3 \approx \boxed{0.575} .


References:

Mr.Chew please edit a=0 to a=1 or else ln(0)= \infty .Minor mistakes are really cruel!

Aruna Yumlembam - 11 months, 2 weeks ago

Log in to reply

Thanks. I have corrected the errot.

Chew-Seong Cheong - 11 months, 2 weeks ago
Aruna Yumlembam
Jun 29, 2020

This is the first time I am using Feynman technique!!So if any error occurred please inform.

Aruna Yumlembam - 11 months, 2 weeks ago

Log in to reply

The integral you get in the second line is known as Frullani Integral and so the problem is solved easily.

Aaghaz Mahajan - 11 months, 2 weeks ago

Whoa ! That was a huge simplification.

Aruna Yumlembam - 11 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...