the integration24

Calculus Level 2

1.1 2.5 2 x x 1 d x = ? \large \int_{1.1}^{2.5} \frac {\lfloor 2x \rfloor}{\lceil x-1 \rceil} dx = \ ?

Notations:


The answer is 3.3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 29, 2020

I = 1.1 2.5 2 x x 1 d x = 1.1 1.5 2 x x 1 d x + 1.5 2 2 x x 1 d x + 2 2.5 2 x x 1 d x = 1.1 1.5 2 d x + 1.5 2 3 d x + 2 2.5 4 2 d x = 2 x 1.1 1.5 + 3 x 1.5 2 + 2 x 2 2.5 = 0.8 + 1.5 + 1 = 3.3 \begin{aligned} I & = \int_{1.1}^{2.5} \frac {\lfloor 2x \rfloor}{\lceil x-1 \rceil} dx \\ & = \int_{1.1}^{1.5} \frac {\lfloor 2x \rfloor}{\lceil x-1 \rceil} dx + \int_{1.5}^2 \frac {\lfloor 2x \rfloor}{\lceil x-1 \rceil} dx + \int_2^{2.5} \frac {\lfloor 2x \rfloor}{\lceil x-1 \rceil} dx \\ & = \int_{1.1}^{1.5} 2\ dx + \int_{1.5}^2 3\ dx + \int_2^{2.5} \frac 42\ dx \\ & = 2x \ \bigg|_{1.1}^{1.5} + 3x \ \bigg|_{1.5}^2 + 2x \ \bigg|_2^{2.5} \\ & = 0.8 + 1.5 + 1 \\ & = \boxed{3.3} \end{aligned}

The result of integration is 2 × ( 1.5 1.1 ) + 3 × ( 2 1.5 ) + 2 × ( 2.5 2 ) = 3.3 2\times (1.5-1.1)+3\times (2-1.5)+2\times (2.5-2)=\boxed {3.3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...