The irrational biquadratic root

Algebra Level 4

If x = 2 + 3 + 6 x=\sqrt2+\sqrt3+\sqrt6 is a root of x 4 + a x 3 + b x 2 + c x + d = 0 x^4+ax^3+bx^2+cx+d=0 , where a a , b b , c c , and d d are integers, what is the value of a + b + c + d |a+b+c+d| ?


The answer is 93.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chris Lewis
Nov 20, 2020

First note that x + 1 = ( 2 + 1 ) ( 3 + 1 ) x+1=\left(\sqrt2+1\right)\left(\sqrt3+1\right) , so ( x + 1 2 + 1 1 ) 2 = 3 ( ( x + 1 ) ( 2 + 1 ) ) 2 = 3 ( 2 + 1 ) 2 ( x 2 ) 2 = 3 ( 2 + 1 ) 2 x 2 2 2 x + 2 = 9 + 6 2 x 2 7 = 6 2 + 2 2 x x 4 14 x 2 + 49 = 72 + 48 x + 8 x 2 x 4 22 x 2 48 x 23 = 0 \begin{aligned} \left(\frac{x+1}{\sqrt2+1}-1\right)^2&=3 \\ \left((x+1)-\left(\sqrt2+1\right)\right)^2&=3\left(\sqrt2+1 \right)^2 \\ \left(x-\sqrt2\right)^2&=3\left(\sqrt2+1 \right)^2 \\ x^2-2\sqrt2 x+2&=9+6\sqrt2 \\ x^2-7 &= 6\sqrt2+2\sqrt2 x \\ x^4-14x^2+49 &= 72+48x+8x^2 \\ x^4-22x^2-48x-23&=0\end{aligned}

so that a + b + c + d = 93 |a+b+c+d|=\boxed{93} .

Note that we need the uniqueness of minimal polynomials to be sure we have the right answer here.

Also note that the roots of this polynomial are 2 + 3 + 6 , 2 3 6 , 2 + 3 6 , 2 3 + 6 \sqrt2+\sqrt3+\sqrt6,\;\;\sqrt2-\sqrt3-\sqrt6,\;\;-\sqrt2+\sqrt3-\sqrt6,\;\;-\sqrt2-\sqrt3+\sqrt6

so I'm sure there's a neater (Galois theory) approach to this, though less sure how easy it is to explain.

There is a much easier way to solve this, ( x 6 ) 2 = ( 2 + 3 ) 2 (x-\sqrt{6})^2 = (\sqrt{2}+\sqrt{3})^2 , which gives us x 2 + 1 = 2 6 ( x + 1 ) x^2+1 = 2\sqrt{6}(x+1) .

Sabhrant Sachan - 6 months, 3 weeks ago
Chew-Seong Cheong
Nov 20, 2020

x = 2 + 3 + 6 x ( x 2 6 ) = ( 2 + 3 + 6 ) ( 2 + 3 6 ) x 2 2 6 x = 2 6 1 x 2 + 1 = 2 6 ( x + 1 ) ( x 2 + 1 ) 2 = 24 ( x + 1 ) 2 x 4 + 2 x 2 + 1 = 24 ( x 2 + 2 x + 1 ) x 4 22 x 2 48 x 23 = 0 \begin{aligned} x & = \sqrt 2 + \sqrt 3 + \sqrt 6 \\ x(x - 2\sqrt 6) & = (\sqrt 2 + \sqrt 3 + \sqrt 6)(\sqrt 2 + \sqrt 3 - \sqrt 6) \\ x^2 - 2\sqrt 6x & = 2\sqrt 6 - 1 \\ x^2 + 1 & = 2\sqrt 6(x+1) \\ (x^2+1)^2 & = 24(x+1)^2 \\ x^4 + 2x^2 + 1 & = 24(x^2 + 2x + 1) \\ x^4 - 22x^2 - 48x - 23 & = 0 \end{aligned}

Therefore a + b + c + d = 0 22 48 23 = 93 |a+b+c+d| = |0-22-48-23| = \boxed{93} .

Patrick Corn
Nov 23, 2020

Let α = 2 + 3 + 6 . \alpha = \sqrt{2} + \sqrt{3} + \sqrt{6}. Since α Q ( 2 , 3 ) , \alpha \in {\mathbb Q}(\sqrt{2},\sqrt{3}), the conjugates of α \alpha are its images under the elements of the Galois group of this field. These send 2 \sqrt{2} to ± 2 \pm \sqrt{2} and 3 \sqrt{3} to ± 3 \pm \sqrt{3} (which determines where 6 \sqrt{6} goes). The four conjugates are 2 + 3 + 6 , 2 3 6 , 2 + 3 6 , 2 3 + 6 . \sqrt{2} + \sqrt{3} + \sqrt{6}, \sqrt{2} - \sqrt{3} - \sqrt{6}, -\sqrt{2} + \sqrt{3} - \sqrt{6}, -\sqrt{2} - \sqrt{3} + \sqrt{6}.

So the minimal polynomial of α \alpha is equal to the product of ( x r i ) , (x-r_i), where the r i r_i are the four conjugates of x . x. Grouping appopriately, we get ( ( x 6 ) 2 ( 2 + 3 ) 2 ) ( ( x + 6 ) 2 ( 2 3 ) 2 ) = ( x + 6 ) 2 ( x 6 ) 2 ( x + 6 ) 2 ( 5 + 2 6 ) ( x 6 ) 2 ( 5 2 6 ) + 1 = ( x 2 6 ) 2 + 1 ( 10 x 2 + 48 x + 60 ) = x 4 22 x 2 48 x 23 \begin{aligned} ((x-\sqrt{6})^2-(\sqrt{2}+\sqrt{3})^2)((x+\sqrt{6})^2-(\sqrt{2}-\sqrt{3})^2) &= (x+\sqrt{6})^2(x-\sqrt{6})^2 - (x+\sqrt{6})^2(5+2\sqrt{6}) - (x-\sqrt{6})^2(5-2\sqrt{6}) + 1 \\ &= (x^2-6)^2 + 1 - (10x^2 + 48x + 60) \\ &= x^4 - 22x^2 - 48x -23 \end{aligned} so the answer is 93 . \fbox{93}.

Very nice solution. I rated it as brilliant and interesting. I'm surprised nobody posted a solution where they just substitute 2 + 3 + 6 \sqrt{2}+\sqrt{3}+\sqrt{6} into the polynomial and set the coefficients of 2 , 3 , \sqrt{2},\sqrt{3}, and 6 \sqrt{6} equal to zero. That's what I did, except I made a mistake three times, so I can't post my solution.

James Wilson - 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...