The I's Have It

Algebra Level 2

i + i 2 + i 3 + i 4 + + i 2018 \large i + i^2 + i^3 + i^4+ \cdots + i^{2018}

What is the simplified value of the expression above?

Notation: i = 1 i = \sqrt{-1} denotes the imaginary unit.

i + 1 i+1 i -i i 1 i-1 i i

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Solution 1: Cyclical nature of i n i^n

We note that the powers of i i is cyclical with a period of 4 as follows:

i n = { 1 if n m o d 4 = 0 i if n m o d 4 = 1 1 if n m o d 4 = 2 i if n m o d 4 = 3 i^n = \begin{cases} 1 & \text{if } n \bmod 4 = 0 \\ i & \text{if } n \bmod 4 = 1 \\ -1 & \text{if } n \bmod 4 = 2 \\ -i & \text{if } n \bmod 4 = 3 \end{cases}

Similarly, the sum of the powers of i i is also cyclical as follows:

s n = k = 1 n i k = { 0 if n m o d 4 = 0 i if n m o d 4 = 1 i 1 if n m o d 4 = 2 1 if n m o d 4 = 3 s_n = \displaystyle \sum_{k=1}^n i^k = \begin{cases} 0 & \text{if } n \bmod 4 = 0 \\ i & \text{if } n \bmod 4 = 1 \\ i-1 & \text{if } n \bmod 4 = 2 \\ -1 & \text{if } n \bmod 4 = 3 \end{cases}

Since 2018 m o d 4 = 2 s 2018 = i 1 2018 \bmod 4 = 2 \implies s_{2018}=\boxed{i-1} .


Solution 2: Sum of Geometric Progression

s 2018 = k = 1 2018 i k = i ( i 2018 1 ) i 1 = i ( 2 ) i 1 = 2 i ( 1 + i ) ( 1 i ) ( 1 + i ) = i 1 \begin{aligned} s_{2018} & = \sum_{k=1}^{2018} i^k \\ & = \frac {i(i^{2018}-1)}{i-1} \\ & = \frac {i(-2)}{i-1} \\ & = \frac {2i(1+i)}{(1-i)(1+i)} \\ & = \boxed {i-1} \end{aligned}

Stephen Brown
Dec 1, 2017

i = i , i 2 = 1 , i 3 = i , i 4 = 1 i + i 2 + i 3 + i 4 = i 1 i + 1 = 0 i=i, i^2=-1, i^3=-i, i^4=1 \Rightarrow i+i^2+i^3+i^4=i-1-i+1=0

Since i 4 n + 1 = i i^{4n+1}=i and 4 2016 4 | 2016 ,

i + i 2 + i 3 + i 4 + + i 2016 = 0 i+i^2+i^3+i^4+\ldots+i^{2016} = 0

i 2017 + i 2018 = i 1 i^{2017}+i^{2018}=\boxed{i-1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...