Solve x + 2 + x + 3 = 5
Bonus, think about the general case:
x + n + x + m = y
Try isolating x here.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let x + 2 = a , x + 3 = b ,then a + b = 5 , b 2 − a 2 = 1 = ( b + a ) ( b − a ) = 5 ( b − a ) , b − a = 0 . 2 , b = 2 . 6 , x = 3 . 7 6
Genaral case:
Let x + n = a , x + m = b ,then a + b = y , a 2 − b 2 = n − m = ( a + b ) ( a − b ) = y ( a − b ) , a − b = y n − m , a = 2 y + y n − m , x = a 2 − n = ( y y 2 + n − m ) 2 − n
Generalization x + m + x + n = y ⟹ x + m = y − x + n Squaring we have x + m = y 2 − 2 y x + n + x + n ⟹ x + n = 2 y y 2 + n − m ⟹ x = ( 2 y y 2 + n − m ) 2 − n ∴ x = ( 2 ⋅ 5 5 2 + 3 − 2 ) 2 − 3 = 7 5 1 6 9 − 7 5 = 2 5 9 4 ≈ 3 . 7 6
x + n + x + m x + n + 2 ( x + n ) ( x + m ) + x + m 2 x + m + n − y 2 4 x 2 + 4 ( m + n − y 2 ) x + ( m + n − y 2 ) 2 4 y 2 x x = y = y 2 = − 2 ( x + n ) ( x + m ) = 4 x 2 + 4 ( m + n ) x + 4 m n = m 2 + 2 m n + n 2 − 2 ( m + n ) y 2 + y 4 − 4 m n = 4 y 2 ( m − n ) 2 − 2 ( m + n ) y 2 + y 4 = 4 ( 5 2 ) ( 2 − 3 ) 2 − 2 ( 2 + 3 ) 5 2 + 5 4 = 1 0 0 3 7 6 = 3 . 7 6 Squaring both sides Rearranging Squaring both sides Rearranging For n = 2 , m = 3 , y = 5
Problem Loading...
Note Loading...
Set Loading...
Let's start with the solving the general case, because we can then use that to solve the general problem.
x + n + x + m = y
Now let's start by squaring both sides. We will get.
( x + n ) + ( x + m ) + 2 x + n x + m = y 2
A bit of simplification gives us.
2 x + n + m + 2 x + n x + m = y 2
Here comes a hard step and it might sound weird. But we will now add a n to both sides and subtract m. Thus we get
2 x + n + m + 2 x + n x + m + n − m = y 2 + n − m
And we will simplify again to get:
2 x + 2 n + 2 x + n x + m = y 2 + n − m
Now we will divide by 2.
2 2 x + 2 n + 2 x + n x + m = 2 y 2 + n − m
And simplify to get
x + n + x + n x + m = 2 y 2 + n − m
Another bit tricky step, but we will pull out x + n out from parenthesis on the left side. This means, that we will get this:
x + n ( x + n + x + m ) = 2 y 2 + n − m
However remember that: x + n + x + m = y . That means we can replace it x + n + x + m with y
x + n ∗ ( y ) = 2 y 2 + n − m
Now we can divide by y on both sides to get:
x + n = 2 y y 2 + n − m
We can now square both sides.
x + n = ( 2 y y 2 + n − m ) 2
And now to finish and isolate x, we will subtract n from both sides and get:
x = ( 2 y y 2 + n − m ) 2 − n
Now we can just replace the numbers in: x + 2 + x + 3 = 5 .
So we get that x is:
x = ( 2 ∗ 5 5 2 + 2 − 3 ) 2 − 2
x = 2 . 4 2 − 2
x = 3 . 7 6