The K One

Find the sum of all positive integers k k such that k ( k + 15 ) k(k+15) is a perfect square.


The answer is 67.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Apr 24, 2019

We note that k ( k + 15 ) k(k+15) is always even. Therefore, we can write k ( k + 15 ) = ( 2 n ) 2 k(k+15) = (2n)^2 , where n n is a positive integer. Then, we have:

k ( k + 15 ) = 4 n 2 k 2 + 15 k 4 n 2 = 0 Solving the quadratic for k k = 1 5 2 + ( 4 n ) 2 15 2 \begin{aligned} k(k+15) & = 4n^2 \\ k^2 + 15k - 4n^2 & = 0 & \small \color{#3D99F6} \text{Solving the quadratic for }k \\ \implies k & = \dfrac {\sqrt{15^2+(4n)^2}-15}2 \end{aligned}

For k k to be an integer, 1 5 2 + ( 4 n ) 2 15^2+(4n)^2 must be an odd perfect square. This means that 15 15 and 4 n 4n are the smaller of a Pythagorean triple . The relevant Pythagorean triples are:

8 , 15 , 17 n = 8 4 = 2 k = 17 15 2 = 1 15 , 20 , 25 n = 20 4 = 5 k = 25 15 2 = 5 15 , 36 , 39 n = 36 4 = 9 k = 39 15 2 = 12 15 , 112 , 113 n = 112 4 = 28 k = 113 15 2 = 49 \begin{array} {cll} {\color{#3D99F6}8}, \underline{15}, \color{#D61F06}17 & \implies \color{#3D99F6} n=\dfrac 84 = 2 & \implies k = \dfrac {{\color{#D61F06}17}-15}2 = 1 \\ \underline{15}, {\color{#3D99F6}20}, \color{#D61F06} 25 & \implies \color{#3D99F6} n= \dfrac {20}4 = 5 & \implies k = \dfrac {{\color{#D61F06}25}-15}2 = 5 \\ \underline{15}, {\color{#3D99F6}36}, \color{#D61F06} 39 & \implies \color{#3D99F6} n= \dfrac {36}4 = 9 & \implies k = \dfrac {{\color{#D61F06}39}-15}2 = 12 \\ \underline{15}, {\color{#3D99F6}112}, \color{#D61F06} 113 & \implies \color{#3D99F6} n= \dfrac {112}4 = 28 & \implies k = \dfrac {{\color{#D61F06}113}-15}2 = 49 \end{array}

Therefore, the sum of all possible k k s is 1 + 5 + 12 + 49 = 67 1+5+12+49=\boxed{67} .

We require that k ( k + 15 ) = n 2 k(k + 15) = n^{2} for some positive integer n n . This equation can be written as

k 2 + 15 k = n 2 ( k + 15 2 ) 2 225 4 = n 2 ( 2 k + 15 ) 2 225 = 4 n 2 k^{2} + 15k = n^{2} \Longrightarrow \left(k + \dfrac{15}{2} \right)^{2} - \dfrac{225}{4} = n^{2} \Longrightarrow (2k + 15)^{2} - 225 = 4n^{2}

( 2 k + 15 ) 2 ( 2 n ) 2 = 225 ( ( 2 k + 15 ) + 2 n ) ( ( 2 k + 15 ) 2 n ) = 225 \Longrightarrow (2k + 15)^{2} - (2n)^{2} = 225 \Longrightarrow ((2k + 15) + 2n)((2k + 15) - 2n) = 225 .

Now consider the factorization pairs of 225 = 3 2 5 2 225 = 3^{2}5^{2} , ascribing the largest factor to ( 2 k + 15 ) + 2 n (2k + 15) + 2n and the smallest to ( 2 k + 15 ) 2 n (2k + 15) - 2n , and then solving for k k . There are 5 such factorizations:

  • ( 2 k + 15 ) + 2 n = 225 , ( 2 k + 15 2 n = 1 4 k + 30 = 226 k = 49 (2k + 15) + 2n = 225, (2k + 15 - 2n = 1 \Longrightarrow 4k + 30 = 226 \Longrightarrow k = 49 ,

  • ( 2 k + 15 ) + 2 n = 75 , ( 2 k + 15 ) 2 n = 3 4 k + 30 = 78 k = 12 (2k + 15) + 2n = 75, (2k + 15) - 2n = 3 \Longrightarrow 4k + 30 = 78 \Longrightarrow k = 12 ,

  • ( 2 k + 15 ) + 2 n = 45 , ( 2 k + 15 ) 2 n = 5 4 k + 30 = 50 k = 5 (2k + 15) + 2n = 45, (2k + 15) - 2n = 5 \Longrightarrow 4k + 30 = 50 \Longrightarrow k = 5 ,

  • ( 2 k + 15 ) + 2 n = 25 , ( 2 k + 15 ) 2 n = 9 4 k + 30 = 34 k = 1 (2k + 15) + 2n = 25, (2k + 15) - 2n = 9 \Longrightarrow 4k + 30 = 34 \Longrightarrow k = 1 ,

  • ( 2 k + 15 ) + 2 n = 15 , ( 2 k + 15 ) 2 n = 15 4 k + 30 = 30 k = 0 (2k + 15) + 2n = 15, (2k + 15) - 2n = 15 \Longrightarrow 4k + 30 = 30 \Longrightarrow k = 0 .

The desired sum of positive integers k k is then 49 + 12 + 5 + 1 + 0 = 67 49 + 12 + 5 + 1 + 0 = \boxed{67} .

Chris Lewis
Apr 24, 2019

The key fact we use here repeatedly is that if u u and v v are coprime integers and u v uv is a square number, then each of u u and v v is also a square number (this is easy to prove - just consider occurrences of prime factors).

The two factors k k and k + 15 k+15 may or may not be coprime. Indeed, gcd ( k , k + 15 ) = gcd ( k , 15 ) { 1 , 3 , 5 , 15 } \gcd{(k,k+15)}=\gcd{(k,15)} \in \{1,3,5,15\} . We need to look at each of these cases separately.

Case gcd ( k , k + 15 ) = 1 \gcd{(k,k+15)}=1 :

k = a 2 k=a^2 , k + 15 = b 2 k+15=b^2

b 2 a 2 = ( b a ) ( b + a ) = 15 b^2-a^2=(b-a)(b+a)=15

There are two sub-cases: b a = 1 b-a=1 , b + a = 15 b+a=15 : a = 7 , b = 8 a=7,b=8 ; k = 49 \boxed{k=49}

b a = 3 b-a=3 , b + a = 5 b+a=5 : a = 1 , b = 4 a=1,b=4 ; k = 1 \boxed{k=1}

This is the only case where the two factors are automatically coprime. For the other cases, we need to divide through by the common factor first.

Case gcd ( k , k + 15 ) = 3 \gcd{(k,k+15)}=3 :

k = 3 k k=3k'

k = a 2 k'=a^2 , k + 5 = b 2 k'+5=b^2

b 2 a 2 = ( b a ) ( b + a ) = 5 b^2-a^2=(b-a)(b+a)=5

b a = 1 b-a=1 , b + a = 5 b+a=5 : a = 2 , b = 3 a=2,b=3 ; k = 12 \boxed{k=12} .

Case gcd ( k , k + 15 ) = 5 \gcd{(k,k+15)}=5 :

k = 5 k k=5k'

k = a 2 k'=a^2 , k + 3 = b 2 k'+3=b^2

b 2 a 2 = ( b a ) ( b + a ) = 3 b^2-a^2=(b-a)(b+a)=3

b a = 1 b-a=1 , b + a = 3 b+a=3 : a = 1 , b = 2 a=1,b=2 ; k = 5 \boxed{k=5} .

Case gcd ( k , k + 15 ) = 15 \gcd{(k,k+15)}=15 :

k = 15 k k=15k'

k = a 2 k'=a^2 , k + 1 = b 2 k'+1=b^2

But there are no consecutive positive square numbers; so no solutions in positive integers for k k in this case.

Hence the full solution set for k k is { 1 , 5 , 12 , 49 } \{1,5,12,49\} , with sum 67 \boxed{67} .

Let a be a positive integer such that k^2+15k=a^2. Then 4a^2+225 must be a perfect square, say it is equal to b^2 where b is another positive integer. Then (b+2a)(b-2a)=225. Writing 225 as the product of 1 and 225, 3 and 75, 5 and 45, and 9 and 25 (the option 225=15.15 gives b=0 which makes k negative). We get the values of k as 49,12,5,1 whose sum is 67

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...