The Largest Power Of 3.......

( 10 0 2 9 9 2 ) ( 9 9 2 9 8 2 ) ( 3 2 2 2 ) ( 2 2 1 2 ) \large (100^2-99^2)(99^2-98^2)\cdots(3^2-2^2)(2^2-1^2)

What is the largest integer n n such that the number above is divisible by 3 n 3^n ?


The answer is 49.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Aug 17, 2018

The given number can be written as:

N = k = 1 99 ( ( k + 1 ) 2 k 2 ) = k = 1 99 ( ( k + 1 ) k ) ( ( k + 1 ) + k ) = k = 1 99 ( 2 k + 1 ) = 3 × 5 × × 197 × 199 = 199 ! ! \begin{aligned} N & = \prod_{k=1}^{99} \left((k+1)^2-k^2\right) = \prod_{k=1}^{99} \left((k+1)-k\right) \left((k+1)+k\right) \\ & = \prod_{k=1}^{99} \left(2k+1\right) = 3 \times 5 \times \cdots \times 197 \times 199 = 199!! \end{aligned}

The highest power of 3 in n ! ! n!! can be found with the following formula:

p ! ! ( n ) = k = 1 n 3 k + 1 2 Putting n = 199 p ! ! ( 199 ) = k = 1 199 3 k + 1 2 = 199 3 + 1 2 + 199 9 + 1 2 + 199 27 + 1 2 + 199 81 + 1 2 = 66 + 1 2 + 22 + 1 2 + 7 + 1 2 + 1 + 1 2 = 33 + 11 + 4 + 1 = 49 \begin{aligned} p_{!!}(n) & = \sum_{k=1}^\infty \left \lfloor \frac {\left \lfloor \frac n{3^k} \right \rfloor + 1}2 \right \rfloor & \small \color{#3D99F6} \text{Putting }n=199 \\ p_{!!}(199) & = \sum_{k=1}^\infty \left \lfloor \frac {\left \lfloor \frac {199}{3^k} \right \rfloor + 1}2 \right \rfloor \\ & = \left \lfloor \frac {\left \lfloor \frac {199}3 \right \rfloor + 1}2 \right \rfloor + \left \lfloor \frac {\left \lfloor \frac {199}9 \right \rfloor + 1}2 \right \rfloor + \left \lfloor \frac {\left \lfloor \frac {199}{27} \right \rfloor + 1}2 \right \rfloor + \left \lfloor \frac {\left \lfloor \frac {199}{81} \right \rfloor + 1}2 \right \rfloor \\ & = \left \lfloor \frac {66 + 1}2 \right \rfloor + \left \lfloor \frac {22 + 1}2 \right \rfloor + \left \lfloor \frac {7 + 1}2 \right \rfloor + \left \lfloor \frac {1+ 1}2 \right \rfloor \\ & = 33 + 11 + 4 + 1 = \boxed{49} \end{aligned}

Notations:

Brian Moehring
Aug 17, 2018

Note that N : = ( 10 0 2 9 9 2 ) ( 9 9 2 9 8 2 ) ( 3 2 2 2 ) ( 2 2 1 2 ) = k = 2 100 ( k 2 ( k 1 ) 2 ) = k = 2 100 ( k ( k 1 ) ) ( k + ( k 1 ) ) = k = 2 100 ( 2 k 1 ) = 199 ! ! = 199 ! 2 99 99 ! \begin{aligned} N &:= \left(100^2-99^2\right)\left(99^2-98^2\right)\cdots\left(3^2-2^2\right)\left(2^2-1^2\right) \\ &= \prod_{k=2}^{100} \left(k^2 - (k-1)^2\right) \\ &= \prod_{k=2}^{100} (k - (k-1)) \cdot (k + (k-1)) \\ &= \prod_{k=2}^{100} (2k-1) \\ &= 199!! \\ &= \frac{199!}{2^{99}99!} \end{aligned}

Now, the highest power of 3 3 that divides n ! n! is given by the formula k = 1 n 3 k \sum_{k=1}^\infty \left\lfloor\frac{n}{3^k}\right\rfloor so that the highest power of 3 3 that divides N = 199 ! 2 99 99 ! N = \dfrac{199!}{2^{99}99!} is k = 1 199 3 k k = 1 99 3 k = ( 66 + 22 + 7 + 2 ) ( 33 + 11 + 3 + 1 ) = 49 \sum_{k=1}^\infty \left\lfloor\frac{199}{3^k}\right\rfloor - \sum_{k=1}^\infty \left\lfloor\frac{99}{3^k}\right\rfloor = (66 + 22 + 7 + 2) - (33 + 11 + 3 + 1) = \boxed{49}

Parth Shandilya
Aug 17, 2018

Let N = * ( 100^2 - 99^2)(99^2 - 98^2)..................(3^2 - 2^2)(2^2 - 1^2) * i.e. N = (100+99)(99+98)(98+97).....................(3+2)(2+1) * i.e. = * 1x3x5x7x9x................197x199. :. n= { 195 3 6 \frac{195-3}{6} +1} + { 189 9 18 \frac{189-9}{18} +1} + { 189 27 54 \frac{189-27}{54} +1} +1 so by solving we will get n=49

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...