The Ultimatum

Find the last digit of ( 1 5 1^{5} + 2 5 2^{5} + 3 5 3^{5} + ......... + 9 9 5 99^{5} )


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Manish Mayank
Jul 28, 2014

I found that for any whole no. a , the last digit of a 5 a^{5} is the last digit of a.

Group the number following this patterns: 1^{5} + 99^{5} , 2^{5} + 98^{5} , 3^{5} + 97^{5}, we can see that the sums of these sub-groups always ends with 0. We can reach the conclusion that the grand total has the same last digit: 0

Ivet Kaih - 6 years, 10 months ago

further explanation !

Mayank Holmes - 6 years, 10 months ago

Log in to reply

It means the last digit of 1 5 1^{5} + ..... + 9 9 5 99^{5} is same as 1 + 2 +....+99

Manish Mayank - 6 years, 10 months ago

Yes I also observed the pattern!!

Anik Mandal - 6 years, 10 months ago

@Manish Mayank Nice observation!

Kevin Mo - 6 years, 10 months ago

Yes... exactly. :) :D

Chetana Sudhir - 6 years, 10 months ago
Akash Deep
Aug 1, 2014

w e h a v e t o p r o v e t h a t , 10 a 5 a a 5 a = a ( a 2 + 1 ) ( a + 1 ) ( a 1 ) n o w c l e a r l y 2 a ( a + 1 ) s o , 2 a 5 a n o w r . t . p = 5 a 5 a c a s e 1 i f 5 a t h e n 5 a 5 a c a s e 2 i f a 1 ( m o d 5 ) t h e n 5 a 1 s o , 5 a 5 a c a s e 3 i f a 2 ( m o d 5 ) t h e n 5 a 2 + 1 c a s e 4 i f a 3 ( m o d 5 ) t h e n 5 a 2 + 1 c a s e 5 i f a 4 ( m o d 5 ) t h e n 5 ( a + 1 ) s o f i n a l l y i n e a c h c a s e 5 a 5 a s o 10 a 5 a a n d a 5 a 0 ( m o d 10 ) a 5 a ( m o d 10 ) h e n c e b o t h h a v e u n i t d i g i t a . we\quad have\quad to\quad prove\quad that,\quad 10\quad |\quad { a }^{ 5 }-a\\ { a }^{ 5 }-a\quad =\quad a({ a }^{ 2 }+1)(a+1)(a-1)\\ now\quad clearly\quad 2|\quad a(a+1)\\ so,\quad 2\quad |\quad { a }^{ 5 }-a\\ now\quad r.t.p\quad =\quad 5\quad |\quad { a }^{ 5 }-a\\ case\quad 1\\ if\quad 5\quad |\quad a\quad then\\ 5\quad |\quad { a }^{ 5 }-a\\ case\quad 2\\ if\quad a\quad \equiv \quad 1\quad (mod\quad 5)\\ then\quad 5\quad |\quad a\quad -1\\ so,\quad 5\quad |\quad { a }^{ 5 }-a\\ case\quad 3\\ if\quad a\quad \equiv \quad 2(mod\quad 5)\\ then\quad 5\quad |\quad { a }^{ 2 }+1\\ case\quad 4\\ if\quad a\quad \equiv \quad 3(mod5)\\ then\quad 5\quad |\quad { a }^{ 2 }+1\\ case\quad 5\\ if\quad a\quad \equiv \quad 4\quad (mod\quad 5)\\ then\quad 5\quad |\quad (a+1)\\ so\quad finally\quad in\quad each\quad case\quad 5\quad |\quad \quad { a }^{ 5 }-a\\ so\quad 10\quad |\quad \quad { a }^{ 5 }-a\\ and\quad \quad { a }^{ 5 }-a\quad \equiv \quad 0\quad (mod\quad 10)\\ \quad { a }^{ 5 }\quad \equiv \quad a\quad (mod\quad 10)\quad hence\quad both\quad have\quad unit\quad \\ digit\quad a.\\

It seems that since 1^5 + 99^5, 2^5 + 98^5,... are each divisible by 100 so their sum is is divisible by 100, so the last 2 digits must be zeros!!!

Michael Fischer - 6 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...