The last four digits, part 2

Find the last four digits of 12 3 999 123^{999} .


The answer is 9187.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chan Lye Lee
Oct 27, 2015

First, we show that 12 3 1000 1 ( m o d 10000 ) 123^{1000}\equiv 1 \pmod {10000} . To see this, we note that ϕ ( 2500 ) = ϕ ( 2 2 5 4 ) = ( 2 2 2 ) ( 5 4 5 3 ) = 1000 \phi(2500)=\phi(2^2 5^4)=(2^2-2)(5^4-5^3)=1000 and hence 12 3 1000 1 ( m o d 2500 ) 123^{1000}\equiv 1 \pmod {2500} . Moreover, 12 3 1000 1 ( m o d 16 ) 123^{1000}\equiv 1 \pmod {16} . Since l c m ( 16 , 2500 ) = 10000 lcm (16,2500)=10000 , then 12 3 1000 1 ( m o d 10000 ) 123^{1000}\equiv 1 \pmod {10000} .

Now let 12 3 999 a b c d ( m o d 10000 ) 123^{999}\equiv \overline{abcd} \pmod {10000} . Then 123 a b c d 1 ( m o d 10000 ) 123\overline{abcd} \equiv 1 \pmod {10000} . This means that d = 7 d=7 . Since 123 × 7 = 861 123\times 7=861 , then 123 c 4 ( m o d 10 ) 123c \equiv 4 \pmod {10} and so c = 8 c=8 , we carry on the same procedure till we obtain a b c d = 9187 \overline{abcd} =9187 .

Remark : using the similar technique, we can show that any 3-digit odd number, says A, not ends in 5, will fulfil A 1000 1 ( m o d 10000 ) A^{1000}\equiv 1 \pmod {10000} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...