The Last Question Before My Graduation From College

Calculus Level 3

lim n 1 3 + 2 3 + + n 3 n 3 n 4 = ? \large\lim_{n\to\infty}\frac {1^3+2^3+\cdots+n^3}{n^3}-\frac n4=\, ?


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Brian Lie
Jun 14, 2018

Relevant wiki: Stolz–Cesàro theorem

L = lim n 1 3 + 2 3 + + n 3 n 3 n 4 = lim n 4 ( 1 3 + 2 3 + + n 3 ) n 4 4 n 3 = lim n 4 ( n + 1 ) 3 ( n + 1 ) 4 + n 4 4 ( n + 1 ) 3 4 n 3 = lim n 6 n 2 + 8 n + 3 12 n 2 + 12 n + 4 = 1 2 = 0.5 \begin{aligned} L&=\lim_{n\to\infty}\frac {1^3+2^3+\cdots+n^3}{n^3}-\frac n4 \\&=\lim_{n\to\infty}\frac {4(1^3+2^3+\cdots+n^3)-n^4}{4n^3} \\&=\lim_{n\to\infty}\frac {4(n+1)^3-(n+1)^4+n^4}{4(n+1)^3-4n^3} \\&=\lim_{n\to\infty}\frac {6n^2+8n+3}{12n^2+12n+4} \\&=\frac 12=\boxed{0.5} \end{aligned}

Naren Bhandari
Jun 14, 2018

L = lim n 1 3 + 2 3 + + n 3 n 3 n 4 = lim n n 2 ( n + 1 ) 2 4 n 3 n 4 = lim n n 2 ( n + 1 ) 2 n 4 4 n 3 = lim n n 4 + 2 n 3 + n 2 n 4 4 n 3 = 1 2 L = \lim_{n\to \infty}\dfrac{1^3+2^3+\cdots +n^3}{n^3} -\dfrac{n}{4} =\lim_{n\to \infty} \dfrac{n^2(n+1)^2}{4n^3} -\dfrac{n}{4}= \lim_{n\to \infty} \dfrac{n^2(n+1)^2 - n^4}{4n^3} = \lim_{n\to \infty} \dfrac{n^4 +2n^3+n^2 - n^4}{4n^3} =\dfrac{1}{2}

You should carry the limit to infinity sign along until the last expression.

Marta Reece - 2 years, 12 months ago

Log in to reply

Oh!! I thought that I had taken unfortunately I hadn't. I have amended it .

Thank you !!

Naren Bhandari - 2 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...