Tetrahedron Bonanza

Geometry Level pending

Point O O is the center of equilateral A B C \triangle{ABC} with with vertices A , B , C A,B,C as shown above.. The point P P with coordinates ( a , a , 0 ) (a,a,0) lies inside A B C \triangle{ABC} and the height of the tetrahedron above is P Q PQ .

Find m Q B O = θ m\angle{QBO} = \theta (in degrees) that minimizes the triangular face Q B O QBO when the volume is held constant.

Express the result to seven decimal places.


The answer is 24.8960906.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Oct 20, 2018

u = a i + a j + h k \vec{u} = -a\vec{i} + a\vec{j} + h\vec{k} and v = 2 a i + 2 a 3 j + 0 k \vec{v} = -2a\vec{i} + \dfrac{2a}{\sqrt{3}}\vec{j} + 0\vec{k}

u X v = 2 a 3 ( h i 3 h j + ( 3 1 ) a k ) \vec{u} X \vec{v} = \dfrac{2a}{\sqrt{3}}(-h\vec{i} - \sqrt{3}h\vec{j} + (\sqrt{3} - 1)a\vec{k})

u = 2 a 2 + h 2 |\vec{u}| = \sqrt{2a^2 + h^2} and u X v = 2 a 3 4 h 2 + ( 4 2 3 ) a 2 |\vec{u} X \vec{v}| = \dfrac{2a}{\sqrt{3}}\sqrt{4h^2 + (4 - 2\sqrt{3})a^2} d = 2 a 4 h 2 + ( 4 2 3 ) a 2 3 2 a 2 + h 2 \implies d = \dfrac{2a\sqrt{4h^2 + (4 - 2\sqrt{3})a^2}}{\sqrt{3}\sqrt{2a^2 + h^2}} \implies The area A = A Q B O = 2 a 4 h 2 + ( 4 2 3 ) a 2 3 A = A_\triangle{QBO} = \dfrac{2a\sqrt{4h^2 + (4 - 2\sqrt{3})a^2}}{\sqrt{3}} .

The volume V = 4 3 a 2 h = k h = 3 k 4 a 2 V = \dfrac{4}{\sqrt{3}} a^2 h = k \implies h = \dfrac{\sqrt{3} k}{4a^2} \implies A ( a ) = 4 3 3 k 2 + 4 ( 4 2 3 ) a 6 a A(a) = \dfrac{4}{\sqrt{3}}\dfrac{\sqrt{3k^2 + 4(4 - 2\sqrt{3})a^6}}{a} \implies d A d a = 4 ( 8 ( 4 3 ) a 6 3 k 2 3 a 2 3 k 2 + 4 ( 4 2 3 ) a 6 = 0 \dfrac{dA}{da} = \dfrac{4(8(4 - \sqrt{3})a^6 - 3k^2}{\sqrt{3} a^2\sqrt{3k^2 + 4(4 - 2\sqrt{3})a^6}} = 0

a 0 a = ( 3 k 2 16 ( 2 3 ) ) 1 6 h = ( 3 ( 2 3 ) k 4 ) 1 3 a \neq 0 \implies a = (\dfrac{3 k^2}{16(2 - \sqrt{3})})^{\frac{1}{6}} \implies h = (\dfrac{\sqrt{3}(2 - \sqrt{3})k}{4})^{\frac{1}{3}} .

u = ( 3 k 4 2 3 ) 1 3 4 3 |\vec{u}| = (\dfrac{\sqrt{3}k}{4\sqrt{2 - \sqrt{3}}})^{\frac{1}{3}}\sqrt{4 - \sqrt{3}} , v = 4 a 3 = ( 16 k 3 2 3 ) 1 3 \:\ |\vec{v}| = \dfrac{4a}{\sqrt{3}} = (\dfrac{16k}{3\sqrt{2 - \sqrt{3}}})^{\frac{1}{3}} and u X v = 2 12 6 3 k 2 3 16 3 ( 2 3 ) ) 1 3 |\vec{u} X \vec{v}| = \dfrac{2\sqrt{12 - 6\sqrt{3}} * k^{\frac{2}{3}}}{16\sqrt{3} (2 - \sqrt{3}))^{\frac{1}{3}}}

sin ( θ ) = u X v u v \implies \sin(\theta) = \dfrac{|\vec{u} X \vec{v}|}{|\vec{u}| |\vec{v}|} = 12 6 3 2 4 3 θ 24.896090 6 = \dfrac{\sqrt{12 - 6\sqrt{3}}}{2\sqrt{4 - \sqrt{3}}} \implies \theta \approx \boxed{24.8960906^\circ}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...