This is the limit

Calculus Level 5

lim n r = 1 n ln ( n 2 + r 2 ) 2 ln ( n ) n = ln ( 2 ) + π 2 2 \large \lim_{n\to\infty} \sum_{r=1}^n \frac{\ln(n^2+r^2) - 2\ln(n)}{n} = \ln(2) + \frac\pi2-2

We are given the value of the limit above. Suppose we consider the limit below

lim n 1 n 2 m [ ( n 2 + 1 ) ( n 2 + 2 2 ) ( n 2 + 3 2 ) ( n 2 + n 2 ) ] m n \large \lim_{n\to\infty} \frac1{n^{2m}} \left[ (n^2+1)(n^2+2^2)(n^2+3^2)\ldots(n^2+n^2)\right]^{\frac mn}

If this limit equals to ( a e b a ) m (ae^{b-a})^m for constant m m and positive integer a a , find the value of b b .

Clarification: e = lim L 0 ( 1 + L ) 1 / L \displaystyle e= \lim_{L \to 0} (1+L)^{1/L } .


The answer is 1.57.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aman Rajput
Jun 20, 2015

Let y = lim n 1 n 2 m [ ( n 2 + 1 2 ) ( n 2 + 2 2 ) . . . . . ( n 2 + n 2 ) ] m / n \displaystyle y = \lim_{n \to \infty} \frac{1}{n^{2m}}[(n^2 +1^2)(n^2 + 2^2).....(n^2 + n^2)]^{m/n}

Taking logarithm both sides and take n 2 m n^{2m} inside the big braces, we get

log y = lim n m n log [ ( n 2 + 1 n 2 ) ( n 2 + 2 2 n 2 ) . . . . ( n 2 + n 2 n 2 ) ] \displaystyle\log y = \lim_{n \to \infty} \frac{m}{n}\log [(\frac{n^2 +1}{n^2})(\frac{n^2+2^2}{n^2})....(\frac{n^2 + n^2}{n^2})]

log y = m n r = 1 n log ( 1 + r 2 n 2 ) \displaystyle\log y = \frac{m}{n} \sum_{r=1}^{n} \log(1 + \frac{r^2}{n^2})

log y = m 0 1 log ( 1 + x 2 ) d x \displaystyle\log y = m \int\limits_0^1 \log(1 + x^2) dx log y = m ( π / 2 + log 2 2 ) \displaystyle \log y = m (\pi/2 + \log 2 -2)

y = e log 2 e π / 2 2 m \displaystyle y = e^{\log{2e^{\pi/2 - 2}}^m}

y = ( 2 e π / 2 2 ) m \displaystyle y = (2e^{\pi/2 -2})^m

a + b = π / 2 2 + 2 = π / 2 a+b = \pi/2 -2 +2 = \pi/2 which is the final answer.

.Excellent solution

Tejas Suresh - 5 years, 11 months ago

l n ( ( k = 1 n ( n 2 + k 2 ) ) m / n n 2 m ) m n l n ( k = 1 n ( n 2 + k 2 ) n 2 ) \displaystyle ln\left(\frac{{\left(\displaystyle \prod_{k=1}^{n}{({n}^{2}+{k}^{2})}\right)}^{m/n}}{{n}^{2m}}\right) \neq \frac{m}{n} ln\left(\frac{\displaystyle \prod_{k=1}^{n}{({n}^{2}+{k}^{2})}}{{n}^{2}}\right)

and b b is not a positive integer.

Kartik Sharma - 5 years, 11 months ago

Log in to reply

Yaa b is not a positive integer thats the mistake in question but my answer is correct . check it again..

Aman Rajput - 5 years, 11 months ago
Chew-Seong Cheong
Aug 19, 2016

L = lim n 1 n 2 m [ ( n 2 + 1 2 ) ( n 2 + 2 2 ) ( n 2 + 3 2 ) . . . ( n 2 + n 2 ) ] m n = exp ( ln ( 1 n 2 m [ r = 1 n ( n 2 + r 2 ) ] m n ) ) Note that exp ( x ) = e x = exp ( m n r = 1 n ln ( n 2 + r 2 ) 2 m ln ( n ) ) = exp ( m r = 1 n ln ( n 2 + r 2 ) 2 ln ( n ) n ) = exp ( m [ ln ( 2 ) + π 2 2 ] ) = ( e ln ( 2 ) + π 2 2 ) m = ( 2 e π 2 2 ) m \begin{aligned} L & = \lim_{n \to \infty} \frac 1{n^{2m}} \left[(n^2+1^2)(n^2+2^2)(n^2+3^2)...(n^2+n^2)\right]^\frac mn \\ & = \exp \left(\ln \left(\frac 1{n^{2m}} \left[\prod_{r=1}^n (n^2+r^2)\right]^\frac mn \right) \right) & \small \color{#3D99F6}{\text{Note that }\exp(x) = e^x} \\ & = \exp \left(\frac mn \sum_{r=1}^n \ln (n^2+r^2) - 2m \ln(n) \right) \\ & = \exp \left(m \sum_{r=1}^n \frac { \ln (n^2+r^2) - 2\ln(n)}n \right) \\ & = \exp \left(m \left[ \ln(2) + \frac \pi 2 - 2 \right] \ \right) \\ & = \left(e^{\ln(2) + \frac \pi 2 -2} \right)^m \\ & = \left(2e^{\frac \pi 2 -2} \right)^m \end{aligned}

b = π 2 1.57 \implies b = \frac \pi 2 \approx \boxed{1.57}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...