The Limit Exists!

Calculus Level 4

L = lim n n 0 1 d x ( 1 + x 2 ) n \large L=\lim_{n\to \infty} \sqrt{n} \int_{0}^{1} \dfrac{dx}{(1+x^2)^n}

Suppose that the above limit exists, then choose the correct option.

1 2 < L < 2 \dfrac{1}{2} < L < 2 4 < L < 5 4< L <5 2 < L 3 2 < L \leq 3 L 5 L \geq 5 3 < L 4 3< L \leq 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Oct 29, 2019

Since 1 d x ( 1 + x 2 ) n < 2 1 n 0 d x x 2 + 1 = π 2 n \int_1^\infty \frac{dx}{(1+x^2)^n} \; < \; 2^{1-n} \int_0^\infty \frac{dx}{x^2+1} \; = \; \frac{\pi}{2^n} we deduce that L = lim n n 0 1 d x ( x 2 + 1 ) n = lim n n 0 d x ( x 2 + 1 ) n L \; = \; \lim_{n \to \infty} \sqrt{n}\int_0^1 \frac{dx}{(x^2+1)^n} \; =\; \lim_{n\to\infty}\sqrt{n} \int_0^\infty \frac{dx}{(x^2+1)^n} The change of variable u = x 2 u = x^2 gives 0 d x ( x 2 + 1 ) n = 1 2 0 u 1 2 d u ( 1 + u ) n = 1 2 B ( 1 2 , n 1 2 ) = π Γ ( n 1 2 ) Γ ( n ) = π 2 2 n 1 ( 2 n 2 n 1 ) \int_0^\infty \frac{dx}{(x^2+1)^n} \; = \; \frac12\int_0^\infty \frac{u^{-\frac12}\,du}{(1 + u)^n} \; = \; \tfrac12B(\tfrac12,n-\tfrac12) \; =\; \frac{\sqrt{\pi}\Gamma(n-\frac12)}{\Gamma(n)} \; = \; \frac{\pi}{2^{2n-1}}\binom{2n-2}{n-1} and Stirling's Approximation now gives L = lim n π n 2 2 n 1 ( 2 n 2 n 1 ) = 1 2 π L \; = \; \lim_{n \to \infty} \frac{\pi \sqrt{n}}{2^{2n-1}}\binom{2n-2}{n -1} \; = \; \tfrac12\sqrt{\pi} and so 1 2 < L < 2 \tfrac12 < L < 2 .

Aaghaz Mahajan
Nov 2, 2019

Observe that ( 1 + x 2 ) n > 1 + n x 2 \displaystyle \left(1+x^{2}\right)^{n}>1+nx^{2} . So,

L = n 0 1 d x ( 1 + x 2 ) n < n 0 1 d x 1 + ( x n ) 2 = arctan ( n ) L=\sqrt{n}\int_{0}^{1}\frac{dx}{\left(1+x^{2}\right)^{n}}<\sqrt{n}\int_{0}^{1}\frac{dx}{1+\left(x\sqrt{n}\right)^{2}}=\arctan\left(\sqrt{n}\right)

Now, making n n tend to \infty we get L < π 2 \displaystyle L<\frac{\pi}{2} hence, the answer being 1 2 < L < 2 \displaystyle \frac{1}{2}<L<2

@Vilakshan Gupta How is this for a simple approach???

Aaghaz Mahajan - 1 year, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...