The limit of absolute value function?

Calculus Level 1

lim x 0 x x = ? \Large \lim_{x \to 0} \frac{x}{|x|} = \ ?

1 1 Undefined (No limit exists) ± 1 \pm 1 1 -1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Michael Huang
Dec 2, 2016

Left-Hand Side Limit

At x < 0 x < 0 , x = x |x| = -x . Then, lim x 0 x x = lim x 0 x ( x ) = 1 \lim_{x\rightarrow 0^{-}} \dfrac{x}{|x|} = \lim_{x\rightarrow 0} \dfrac{x}{-(x)} = -1

Right Hand Side Limit

At x > 0 x > 0 , x = x |x| = x . Then, lim x 0 + x x = lim x 0 x x = 1 \lim_{x\rightarrow 0^{+}} \dfrac{x}{|x|} = \lim_{x\rightarrow 0} \dfrac{x}{x} = 1

Answer

Since lim x 0 x x lim x 0 + x x \lim_{x\rightarrow 0^{-}} \dfrac{x}{|x|} \neq \lim_{x\rightarrow 0^{+}} \dfrac{x}{|x|} this concludes that limit does not exist \boxed{\text{limit does not exist}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...