The limt of

Calculus Level 4

lim x 0 2 sin ( sin 2 x ) sin ( sin 4 x ) x 3 = ? \large \lim_{x\to 0} \frac{2\sin(\sin 2x) - \sin(\sin 4x)}{x^3} = \, ?


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Maclaurin Series

The problem can be solved by using Maclaurin series of sin x \sin x twice as follows.

L = lim x 0 2 sin ( sin 2 x ) sin ( sin 4 x ) x 3 = lim x 0 1 x 3 ( 2 sin ( 2 x 2 3 x 3 3 ! + 2 5 x 5 5 ! ) sin ( 4 x 4 3 x 3 3 ! + 4 5 x 5 5 ! ) ) = lim x 0 1 x 3 ( ( 4 x 16 x 3 3 ! + O ( x 5 ) 16 x 3 3 ! + O ( x 5 ) ) ( 4 x 64 x 3 3 ! + O ( x 5 ) 64 x 3 3 ! + O ( x 5 ) ) ) = lim x 0 1 x 3 ( 96 x 3 3 ! + O ( x 5 ) ) = lim x 0 ( 16 + O ( x 2 ) ) = 16 \begin{aligned} L & = \lim_{x \to 0} \frac {2\sin (\sin 2x)-\sin (\sin 4x)}{x^3} \\ & = \lim_{x \to 0} \frac 1{x^3} \left({\color{#3D99F6}2\sin \left(2x - \frac {2^3x^3}{3!} + \frac {2^5x^5}{5!} - \cdots \right)} - \color{#D61F06} \sin \left(4x - \frac {4^3x^3}{3!} + \frac {4^5x^5}{5!} - \cdots \right) \right) \\ & = \lim_{x \to 0} \frac 1{x^3} \left({\color{#3D99F6}\left(4x - \frac {16x^3}{3!} + O(x^5) - \frac {16x^3}{3!} + O(x^5) \right)} - \color{#D61F06} \left(4x - \frac {64x^3}{3!} + O(x^5) - \frac {64x^3}{3!} + O(x^5) \right) \right) \\ & = \lim_{x \to 0} \frac 1{x^3} \left(\frac {96x^3}{3!} + O(x^5) \right) \\ & = \lim_{x \to 0} \left(16 + O(x^2) \right) \\ & = \boxed {16} \end{aligned}

Asma Mohamed
Oct 7, 2018

X go. To. Zer0

You should mention it in the question and not in answer.

Ram Mohith - 2 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...