The local maxima

Calculus Level 3

Let function f ( x ) = ( 2 + x + a x 2 ) ln ( x + 1 ) 2 x f(x)=(2+x+ax^2)\ln(x+1)-2x , where a a is a parameter and a R a \in \mathbb R .

If x = 0 x=0 is the local maxima of f ( x ) f(x) , find the value of a a .

Let A A denote the answer. Submit 10000 A \lfloor 10000A \rfloor .


The answer is -1667.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 13, 2019

f ( x ) = ( 2 + x + a x 2 ) ln ( x + 1 ) 2 x = ( 2 + x + a x 2 ) ( x x 2 2 + x 3 3 x 4 4 + ) 2 x = ( a 1 2 + 2 3 ) x 3 ( a 2 1 3 + 1 2 ) x 4 + O ( x 5 ) = ( a + 1 6 ) x 3 ( a 2 + 1 6 ) x 4 + O ( x 5 ) \begin{aligned} f(x) & = \left(2+x+ax^2\right) \ln (x+1) - 2x \\ & = \left(2+x+ax^2\right) \left(x-\frac {x^2}2 + \frac {x^3}3-\frac {x^4}4 + \cdots \right)- 2x \\ & = \left(a-\frac 12 + \frac 23\right) x^3 - \left(\frac a2-\frac 13 + \frac 12\right) x^4 + O(x^5) \\ & = \left(a+\frac 16 \right) x^3 - \left(\frac a2 + \frac 16\right) x^4 + O(x^5) \end{aligned}

For f ( 0 ) = 0 f(0) = 0 to be a local maximum, f ( ± Δ x ) < 0 f(\pm \Delta x) < 0 , where Δ x \Delta x is a small increment of x x . That is f ( ± Δ x ) = ± ( a + 1 6 ) Δ 3 x ( a 2 + 1 6 ) Δ 4 x + O ( Δ 5 x ) < 0 f(\pm \Delta x) = \pm \left(a+\dfrac 16 \right) \Delta^3 x - \left(\dfrac a2 + \dfrac 16\right) \Delta^4 x + O(\Delta^5 x) < 0 , which is always true when a = 1 6 = A a = - \dfrac 16 = A . Therefore 10000 A = 1667 \lfloor 10000A \rfloor = \boxed {-1667} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...