The Log-Sine Affair

Calculus Level 5

0 π 2 ( ln sin x ) 2 d x = π A B + π ln 2 ( C C ) \large \int_{0}^{\frac{\pi}{2}} (\ln\sin{x})^2 dx = \frac{\pi^A}{B}+\pi\ln^2(\sqrt{C}^{\sqrt{C}}) The equation above is satisfied for positive integers A , B A, B and C C . Find A B C \sqrt{\dfrac{A B}{C}} .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Sep 20, 2017

Since B ( α , β ) = 2 0 1 2 π sin 2 α 1 θ cos 2 β 1 θ d θ B(\alpha,\beta) \; = \; 2\int_0^{\frac12\pi} \sin^{2\alpha-1}\theta\,\cos^{2\beta-1}\theta\,d\theta we deduce that 0 1 2 π ( ln sin θ ) 2 d θ = 1 8 2 B α 2 ( α , β ) α = β = 1 2 = 1 8 B ( α , β ) [ ( ψ ( α ) ψ ( α + β ) ) + ( ψ ( α ) ψ ( α + β ) ) 2 ] α = β = 1 2 = 1 8 B ( 1 2 , 1 2 ) [ ( ψ ( 1 2 ) ψ ( 1 ) ) + ( ψ ( 1 2 ) ψ ( 1 ) ) 2 ] = 1 8 Γ ( 1 2 ) 2 [ 1 2 π 2 1 6 π 2 + ( γ 2 ln 2 + γ ) 2 ] = 1 8 π [ 1 3 π 2 + 4 ln 2 2 ] = 1 24 π 3 + 1 2 π ln 2 2 = 1 24 π 3 + π ln 2 ( 2 2 ) \begin{aligned} \int_0^{\frac12\pi} (\ln\,\sin \theta)^2\,d\theta & = \; \tfrac18\frac{\partial^2 B}{\partial \alpha^2}(\alpha,\beta) \Big|_{\alpha = \beta = \tfrac12} \\ & = \; \tfrac18B(\alpha,\beta)\Big[(\psi'(\alpha) - \psi'(\alpha+\beta)) + (\psi(\alpha) - \psi(\alpha+\beta))^2\Big] \Big|_{\alpha = \beta = \tfrac12} \\ & = \; \tfrac18B(\tfrac12,\tfrac12)\big[(\psi'(\tfrac12) - \psi'(1)) + (\psi(\tfrac12) - \psi'(1))^2\big] \; = \; \tfrac18\Gamma(\tfrac12)^2\big[ \tfrac12\pi^2 - \tfrac16\pi^2 + (-\gamma - 2\ln2 + \gamma)^2\big] \\ & = \; \tfrac18\pi\big[\tfrac13\pi^2 + 4\ln^22\big] \; = \; \tfrac{1}{24}\pi^3 + \tfrac12\pi \ln^22 \; = \; \tfrac{1}{24}\pi^3 + \pi \ln^2\big(\sqrt{2}^{\sqrt{2}}\big) \end{aligned} making the answer 24 × 3 2 = 6 \sqrt{\frac{24 \times 3}{2}} = \boxed{6} .

Could you, please, write a solution to this problem ?. It would mean a lot.

Digvijay Singh - 3 years, 7 months ago
敬全 钟
Sep 20, 2017

We consider the beta integral of the form B ( x , y ) = 0 π 2 2 sin 2 x 1 ( t ) cos 2 y 1 ( t ) d t . B(x,y)=\int^{\frac{\pi}{2}}_02\sin^{2x-1}(t)\cos^{2y-1}(t)\ dt. Differentiating two times with respect to x , x, we have 2 x 2 B ( x , y ) = 0 π 2 8 ( ln sin x ) 2 sin 2 x 1 ( t ) cos 2 y 1 ( t ) d t = B ( x , y ) ( ( ψ ( x ) ψ ( x + y ) ) 2 + ψ 1 ( x ) ψ 1 ( x + y ) ) \begin{aligned} \frac{\partial^2}{\partial x^2}B(x,y)&=&\int^{\frac{\pi}{2}}_08(\ln\sin x)^2\sin^{2x-1}(t)\cos^{2y-1}(t)\ dt\\ &=&B(x,y)\left(\left(\psi(x)-\psi(x+y)\right)^2+\psi_1(x)-\psi_1(x+y)\right)\\ \end{aligned} where ψ ( x ) \psi(x) is digamma function and ψ 1 ( x ) : = d d x ψ ( x ) \psi_1(x):=\frac{d}{dx}\psi(x) is trigamma function. By substituting x = y = 1 2 , x=y=\frac{1}{2}, and applying the facts that ψ ( 1 2 ) = γ ln 4 , ψ ( 1 ) = γ , ψ 1 ( 1 2 ) = π 2 2 \psi(\frac{1}{2})=-\gamma-\ln4, \psi(1)=\gamma, \psi_1\left(\frac{1}{2}\right)=\frac{\pi^2}{2} and ψ 1 ( 1 ) = π 2 6 , \psi_1(1)=\frac{\pi^2}{6}, the result follows, i.e. 0 π 2 ( ln sin x ) 2 d x = π ln 2 ( 2 2 ) + π 3 24 . \int^{\frac{\pi}{2}}_0(\ln\sin x)^2\ dx=\pi\ln^2\left(\sqrt{2}^{\sqrt{2}}\right)+\frac{\pi^3}{24}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...