The log a x \log_{a} x Goes To The h h

Calculus Level 2

What is the derivative f ( x ) f'(x) of f ( x ) = log a x f(x)=\log_{a} x ?

1 x ln ( a ) , x > 0 \frac{1}{x\ln(a)},\ x>0 1 a ln ( x ) , x > 0 -\frac{1}{a\ln(x)},\ x>0 1 x log ( a ) , x > 0 \frac{1}{x\log(a)},\ x>0 1 x ln ( a ) , x 0 \frac{1}{x\ln(a)},\ x\geq0 1 a ln ( x ) , x 0 -\frac{1}{a\ln(x)},\ x\geq0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 21, 2018

f ( x ) = log a x f ( x ) = d d x log a x = d d x ( ln x ln a ) = 1 x ln a for x > 0 \begin{aligned} f(x) & = \log_a x \\ \implies f'(x) & = \frac d{dx} \log_a x \\ & = \frac d{dx}\left(\frac {\ln x}{\ln a}\right) \\ & = \boxed{\dfrac 1{x\ln a}} & \small \color{#3D99F6} \text{for }x > 0 \end{aligned}

X X
Jul 21, 2018

log a x = ln x ln a \log_a{x}=\dfrac{\ln{x}}{\ln a} ,so the derivative is 1 x × 1 ln a = 1 x ln a \dfrac1x\times\dfrac1{\ln a}=\dfrac1{x\ln a}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...