The logarithm to base 10 is called the common logarithm

Algebra Level 1

What is the value of x x ?

log x 8000 = 3 \large\log_{x}8000=3


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Matin Naseri
Mar 6, 2018

log x 8000 = 3 \log_{x}{8000}=3

\implies x 3 = 8000 \text{x}^{3}=8000 , 8000 3 = x \sqrt[3]{8000}=x

8000 3 = 20 \sqrt[3]{8000}=20

\therefore the answer is 20 \boxed{20}

Note: for trailling numbers of zero of A number for \sqrt{} or any other root we separate for the value of root the zeros.

For example:

00 2 = 0 \sqrt[2]{00}=0

0000 2 = 00 \sqrt[2]{0000}=00

\vdots

000 3 = 0 \sqrt[3]{000}=0

000000 3 = 00 \sqrt[3]{000000}=00

\vdots

For Evaluate the 8000 3 \sqrt[3]{8000} we have 8 3 = 2 , 000 3 = 0 \sqrt[3]{8}=2,{\sqrt[3]{000}=0} thus the answer is 20.

log x 8000 = 3 x 3 = 8000 x = 8000 3 x = 20 \log_x 8000 = 3 \\ x^3 = 8000 \\ x = \sqrt[3]{8000} \\ x = \boxed{20}

log x 8000 = 3 log x 2 0 3 = 3 3 log x 20 = 3 log x 20 = 1 x = 20 \log_x8000 = 3 \\ \log_x20^3 = 3 \\ 3\log_x20=3 \\ \log_x20=1 \\ \therefore x = 20

Munem Shahriar
Nov 14, 2017

log x 8000 = 3 \log_x 8000 = 3

8000 = x 3 \Rightarrow 8000 = x^3

8000 3 = x \Rightarrow \sqrt[3]{8000} = x

( 2 0 3 ) 3 = x \Rightarrow \sqrt[3]{(20^3)} = x

20 = x \Rightarrow \boxed{20} = x

@Sakib Nazmus please change the topic to ''Algebra''.

Munem Shahriar - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...