The Logarithmic Reciprocal

Calculus Level 2

10 × 2 e 1 ln ( x ) d x = ? \bigg \lfloor \;10 \times \displaystyle \int_2^e \! \frac {1}{\ln(x)} \, \mathrm{d}x\;\bigg \rfloor = \ ?

Details and Assumptions :

  • You may use the following approximations: e 2.718 e \approx 2.718 , and ln ( 2 ) 0.693 \ln(2) \approx 0.693 , and use the following graph of f ( x ) = 1 ln ( x ) f(x)= \frac {1}{\ln(x)} .
9 7 10 8

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Utsav Banerjee
Apr 19, 2015

Let us first calculate an upper bound for the integral 2 e 1 l n ( x ) d x \displaystyle \int_2^e \! \frac {1}{ln(x)} \, \mathrm{d}x . The graph of f ( x ) = 1 l n ( x ) f(x)= \frac {1}{ln(x)} is already provided in the question as reference. Note that f(x) decreases from f ( 2 ) = 1 l n ( 2 ) 1.443 f(2)= \frac {1}{ln(2)} \approx 1.443 to f ( e ) = 1 f(e)=1 in the region [ 2 , e ] [2,e] . Since the value of 2 e 1 l n ( x ) d x \displaystyle \int_2^e \! \frac {1}{ln(x)} \, \mathrm{d}x is the area under the curve y = f ( x ) = 1 l n ( x ) y=f(x)= \frac {1}{ln(x)} in the region [ 2 , e ] [2,e] , it must be intuitively less than the area of the trapezoid shown in the figure below.

Therefore, 2 e 1 l n ( x ) d x < 1 2 ( 1.443 + 1 ) ( 0.718 ) 0.877 \displaystyle \int_2^e \! \frac {1}{ln(x)} \, \mathrm{d}x\;<\; \frac {1}{2} (1.443+1)(0.718) \approx 0.877

Next, we move to the more involved task of calculating a lower bound for the integral 2 e 1 l n ( x ) d x \displaystyle \int_2^e \! \frac {1}{ln(x)} \, \mathrm{d}x . Using the definition of definite integral as a limit, we get

a b f ( x ) d x \displaystyle \int_a^b \! f(x) \, \mathrm{d}x = lim n i = 1 n ( b a n ) f ( a + b a n i ) = \displaystyle \lim_{n \to \infty} \displaystyle \sum_{i=1}^{n} ( \frac {b-a}{n}) f(a+ \frac {b-a}{n}i)

and,

a b 1 f ( x ) d x \displaystyle \int_a^b \! \frac {1}{f(x)} \, \mathrm{d}x = lim n i = 1 n ( b a n ) 1 f ( a + b a n i ) = \displaystyle \lim_{n \to \infty} \displaystyle \sum_{i=1}^{n} ( \frac {b-a}{n}) \frac {1}{f(a+ \frac {b-a}{n}i)}

Now, if f ( x ) f(x) takes only positive values in the region [ a , b ] [a,b] , then we can use the AM-HM Inequality to write

i = 1 n f ( a + b a n i ) n n i = 1 n 1 f ( a + b a n i ) \frac { \displaystyle \sum_{i=1}^{n} f(a+ \frac {b-a}{n}i)}{ \displaystyle n} \geq \frac { \displaystyle n}{ \displaystyle \sum_{i=1}^{n} \frac {1}{f(a+ \frac {b-a}{n}i)}}

( 1 n i = 1 n f ( a + b a n i ) ) ( 1 n i = 1 n 1 f ( a + b a n i ) ) 1 \Rightarrow ( \displaystyle \frac {1}{n} \displaystyle \sum_{i=1}^{n} f(a+ \frac {b-a}{n}i))( \displaystyle \frac {1}{n} \displaystyle \sum_{i=1}^{n} \frac {1}{f(a+ \frac {b-a}{n}i)}) \geq 1

( b a n i = 1 n f ( a + b a n i ) ) ( b a n i = 1 n 1 f ( a + b a n i ) ) ( b a ) 2 \Rightarrow ( \displaystyle \frac {b-a}{n} \displaystyle \sum_{i=1}^{n} f(a+ \frac {b-a}{n}i))( \displaystyle \frac {b-a}{n} \displaystyle \sum_{i=1}^{n} \frac {1}{f(a+ \frac {b-a}{n}i)}) \geq (b-a)^{2}

Therefore,

( lim n i = 1 n ( b a n ) f ( a + b a n i ) ) ( \displaystyle \lim_{n \to \infty} \displaystyle \sum_{i=1}^{n} ( \frac {b-a}{n}) f(a+ \frac {b-a}{n}i))

× ( lim n i = 1 n ( b a n ) 1 f ( a + b a n i ) ) ( b a ) 2 \;\;\;\times (\displaystyle \lim_{n \to \infty} \displaystyle \sum_{i=1}^{n} ( \frac {b-a}{n}) \frac {1}{f(a+ \frac {b-a}{n}i)}) \geq (b-a)^{2}

( a b f ( x ) d x ) × ( a b 1 f ( x ) d x ) ( b a ) 2 \Rightarrow ( \displaystyle \int_a^b \! f(x) \, \mathrm{d}x) \times ( \displaystyle \int_a^b \! \frac {1}{f(x)} \, \mathrm{d}x) \geq (b-a)^{2}

Substituting f ( x ) = l n ( x ) f(x)=ln(x) , a = 2 a=2 and b = e b=e , we get

( 2 e l n ( x ) d x ) × ( 2 e 1 l n ( x ) d x ) ( e 2 ) 2 0.5155 ( \displaystyle \int_2^e \! ln(x) \, \mathrm{d}x) \times ( \displaystyle \int_2^e \! \frac {1}{ln(x)} \, \mathrm{d}x) \geq (e-2)^2 \approx 0.5155

Now, it is easy to calculate that 2 e l n ( x ) d x = 2 2 l n ( 2 ) 0.614 \displaystyle \int_2^e \! ln(x) \, \mathrm{d}x = 2-2ln(2) \approx 0.614

Therefore, 2 e 1 l n ( x ) d x 0.5155 2 e l n ( x ) d x = 0.5155 0.614 0.8396 \displaystyle \int_2^e \! \frac {1}{ln(x)} \, \mathrm{d}x \geq \frac {0.5155}{ \displaystyle \int_2^e \! ln(x) \, \mathrm{d}x} = \frac {0.5155}{0.614} \approx 0.8396

After all these calculations we get 0.8396 2 e 1 l n ( x ) d x < 0.877 0.8396 \leq \displaystyle \int_2^e \! \frac {1}{ln(x)} \, \mathrm{d}x < 0.877

8.396 10 × 2 e 1 l n ( x ) d x < 8.77 \Rightarrow 8.396 \leq 10 \times \displaystyle \int_2^e \! \frac {1}{ln(x)} \, \mathrm{d}x < 8.77

Therefore, [ 10 × 2 e 1 l n ( x ) d x ] = 8 [\;10 \times \displaystyle \int_2^e \! \frac {1}{ln(x)} \, \mathrm{d}x\;] = 8

NOTE:

For any function f ( x ) f(x) , if M M and m m are respectively the global maximum and global minimum of f ( x ) f(x) in the region [ a , b ] [a,b] , then

m ( b a ) a b f ( x ) d x M ( b a ) m(b-a) \leq \displaystyle \int_a^b \! f(x) \, \mathrm{d}x \leq M(b-a)

In this case, f ( x ) = 1 l n ( x ) f(x)= \frac {1}{ln(x)} , a = 2 a=2 and b = e b=e . It might be tempting to use the above inequality for this problem. Note that m = 1 m=1 and M 1.443 M \approx1.443 . So, we have

0.718 2 e 1 l n ( x ) d x 1.036 0.718 \leq \displaystyle \int_2^e \! \frac {1}{ln(x)} \, \mathrm{d}x \leq 1.036

This inequality is indeed true, but we need a much tighter bound to get the exact value of [ 10 × 2 e 1 l n ( x ) d x ] [\;10 \times \displaystyle \int_2^e \! \frac {1}{ln(x)} \, \mathrm{d}x\;] . The other 3 incorrect options in the question ( 7 7 , 9 9 and 10 10 ) are mentioned specifically keeping this in mind!

Please note that I have developed the idea & then designed the question myself. The lower bound could also have been derived using the Cauchy-Schwartz Inequality, but I found using the AM-HM Inequality very exciting! In case there are other possible solutions, please mention in the comments.

Moderator note:

You actually don't need to use the graph as a reference, a simple derivative shows that it is monotonically decreasing.

Or just use mean value theorem and second derivative test and calculate a trapezoid.

Edit: Looks like you don't even need a second derivative test.

Jake Lai - 6 years, 1 month ago

Is there a wiki on the definition of an integral that you mentioned in your solution?

Curtis Clement - 6 years, 1 month ago

it's because you didn't appreciate x. Jake lai.

Am Kemplin - 1 month, 3 weeks ago
Jake Lai
Apr 23, 2015

Disclaimer: I won't be going through my motivations, or it will be a really long solution. If you would like to know why I did what I did, comment and I will get back to you.


y = 1 ln x y = \frac{1}{\ln x} passes through ( 2 , 1 ln 2 ) (2, \frac{1}{\ln 2}) and ( e , 1 ) (e, 1) . The secant is of gradient 1 1 ln 2 e 2 0.617 \displaystyle \frac{1-\frac{1}{\ln 2}}{e-2} \approx -0.617 . By MVT, there exists some point with tangent parallel to the secant.

d d x 1 ln x = 0.617 x ln 2 x = 1.621 \frac{d}{dx} \frac{1}{\ln x} = -0.617 \longrightarrow x\ln^{2} x = 1.621

For x = 2 x = 2 , x ln 2 x = 2 ( 0.693 ) 2 0.960 x\ln^{2} x = 2(0.693)^{2} \approx 0.960 . For x = e x = e , x ln 2 x = e ( 1 ) 2 = 2.178 x\ln^{2} x = e(1)^{2} = 2.178 .

Since x ln 2 x x\ln^{2} x is monotonically increasing, we choose a convenient x x "halfway" between 2 2 and e e : the geometric mean. Verifying, we see x ln 2 x = 2 e ( ln 2 + 1 2 ) 2 1.671 x\ln^{2} x = \sqrt{2e}(\frac{\ln 2 + 1}{2})^{2} \approx 1.671 .

So 1 ln 2 e = 2 ln 2 + 1 1.181 \frac{1}{\ln \sqrt{2e}} = \frac{2}{\ln 2 + 1} \approx 1.181 and 1 ln 2 + 1 2 1.222 \displaystyle \frac{\frac{1}{\ln 2}+1}{2} \approx 1.222 . Hence, the midpoint is 1.181 + 1.222 2 = 1.2015 \frac{1.181+1.222}{2} = 1.2015 . The line that passes through ( 2 e , 1.2015 ) (\sqrt{2e}, 1.2015) with gradient 0.617 -0.617 is y = 0.617 x + 2.640 y = -0.617x+2.640 .

So the area is approximately

2 2.718 0.617 x + 2.640 d x 0.851 \int_{2}^{2.718} -0.617x+2.640 \ dx \approx \boxed{0.851}

Quite accurate, considering WolframAlpha says it's 0.8500 0.8500 .

Its just 10Li(e) that is approximately 8,49.

Anton Amirkhanov - 1 year, 9 months ago
Curtis Clement
Apr 23, 2015

I personally would use the trapezium rule with 8 strips from 2.0 to 2.7: A r e a h 2 ( y 0 + y n + 2 k = 1 n 1 y k ) \ Area \approx \frac{h}{2}( y_0 +y_n + 2 \displaystyle\sum_{k=1}^{n-1} y_k) A r e a 0.05 ( 1 l n 2 + 1 L n 2.7 + 2 ( 1 l n 2.1 + . . . + 1 L n 2.6 ) ) \Rightarrow\ Area \approx 0.05( \frac{1}{ln2} + \frac{1}{Ln 2.7} + 2(\frac{1}{ln2.1} +...+\frac{1}{Ln2.6} ) ) = 8.32 ( 3 s . f . ) = 8.32 \ (3s.f.) From the graph it is clear that because the gradient is so shallow so the overestimate will be very small. 10 × 2 e 1 l n ( x ) d x = 8 \therefore\lfloor 10 \times \int_{2}^{e} \frac{1}{ln(x)} dx \rfloor = \boxed{8}

My solution doesn't use the graph but yeah, good solution as well.

Jake Lai - 6 years, 1 month ago

forgot to use condition below....lol.....

Zack Yeung - 6 years, 1 month ago

forgot to use condition below....lol.....

Am Kemplin - 1 month, 3 weeks ago
Jayanta Mandi
Apr 19, 2015

I calculate the upper bound the same way you did.

For the lower bound I make the substitution x = e z x=e^{z} So the integral becomes 1 l n 2 e z z d z \int_1^{ln2} \frac{e^z}{z} dz

Now in the region [ ln 2 , 1 ] e z z [ \ln 2,1] \frac{e^z}{z} is decreasing function.

So e 1 l n 2 1 d z < l n 2 1 e z z d z < e 2 l n 2 l n 2 1 d z \frac{e}{1} \int_{ln2}^1 dz < \int_{ln2}^1 \frac{e^z}{z} dz < \frac{e^2}{ln2} \int_{ln2}^1 dz

l n 2 1 e z z d z > e l n 2 1 d z = e ( 1 l n 2 ) = 0.834 \Longrightarrow \int_{ln2}^1 \frac{e^z}{z} dz >e \int_{ln2}^1 dz =e (1-ln2)=0.834

Great! Thanks for the much shorter solution. :)

Utsav Banerjee - 6 years, 1 month ago

it's so hard.............lol...........

Am Kemplin - 1 month, 3 weeks ago
Souvik Ghosh
Dec 22, 2015

I've used just a basic form of definite integral to make this solve..

Simply substitute ln(x) as t

Aniket Singh - 4 years, 6 months ago

%$&(:77$&#:4-?+&+(+#-+44??5-4%!';'2%354::?%524- %$\$@8:7)-4#$(% :';%&$" 😠!

Am Kemplin - 1 month, 3 weeks ago

Log in to reply

2222222222222222

Am Kemplin - 1 month, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...